Effect of Substrate, Feeding Mode and Number of Stages on the Performance of Hybrid Constructed Wetland Systems
Abstract
:1. Introduction
- -
- To check the performance of a mulch-based HF as the first stage of a hybrid CW after 3 years in operation.
- -
- Regarding the second stage VF:
- ○
- To compare gravel with mulch as substrates for VFs.
- ○
- To compare the continuous feeding mode with intermittent feeding mode.
- ○
- To determine the number of VFs in series to meet the European legal limits for effluent discharge regarding TSS (35 mg/L) and organic matter (BOD: 25 mg/L, COD: 125 mg/L) [24].
2. Materials and Methods
2.1. Constructed Wetland (CW) Mesocosms
2.2. Water Analysis
2.3. Statistics
3. Results and Discussion
3.1. Characteristics of the Influent
3.2. Performance of the First Stage HF
3.3. Second Hybrid CW Stage: the VFs
3.3.1. Effect of the Number of VFs
3.3.2. Effect of Influent Feeding Mode (Pulse vs. Continuous)
4. Conclusions
- -
- palm mulch is a better substrate than gravel for VFs,
- -
- with two vertical VFs in series the European legal limits regarding COD, BOD and TSS can be met even when high LR are applied,
- -
- the continuous influent feeding mode significantly improved performance.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- García-Herrera, R.; Gallego, D.; Hernández, E.; Gimeno, L.; Ribera, P.; Calvo, N. Precipitation trends in the Canary Islands. Int. J. Climatol. 2003, 23, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Martín, I.; Betancort, J.R.; Pidre, J.R. Contribution of non-conventional technologies for sewage treatment to improve the quality of bathing waters (ICREW project). Desalination 2007, 215, 82–89. [Google Scholar] [CrossRef]
- Rousseau, D.P.L.; Vanrolleghem, P.A.; De Pauw, N. Constructed wetlands in Flanders: A performance analysis. Ecol. Eng. 2004, 23, 151–163. [Google Scholar] [CrossRef]
- Mander, Ü.; Dotro, G.; Ebie, Y.; Towprayoone, S.; Chiemchaisri, C.; Nogueira, S.; Jamsranjav, B.; Kasaka, K.; Truua, J.; Tournebize, J.; et al. Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2014, 66, 19–35. [Google Scholar] [CrossRef]
- Dixon, A.; Simon, M.; Burkitt, T. Assessing the environmental impact of two options for small-scale wastewater treatment: Comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol. Eng. 2003, 20, 297–308. [Google Scholar] [CrossRef]
- Knowles, P.; Dotro, G.; Nivala, J.; García, J. Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors. Ecol. Eng. 2011, 37, 99–112. [Google Scholar] [CrossRef]
- Zurita, F.; De Anda, J.; Belmont, M.A. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol. Eng. 2009, 35, 861–869. [Google Scholar] [CrossRef]
- Masi, F.; Martinuzzi, N. Constructed wetlands for the Mediterranean countries: Hybrid systems for water reuse and sustainable sanitation. Desalination 2007, 215, 44–55. [Google Scholar] [CrossRef]
- Herrera-Melián, J.A.; Martín Rodríguez, A.J.; Araña, J.; González Díaz, O.; González Henríquez, J.J. Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecol. Eng. 2010, 36, 891–899. [Google Scholar] [CrossRef]
- Peñate, B.; Martel, G.; Vera, L.; Márquez, M.; Gutiérrez, J.; Moreno, E.; del Castillo, G.; Farrujia, I. El Agua en Canarias. Ed. Canarian Technological Institute, Department of Water. 2013. Available online: http://islhagua.org/c/document_library/get_file?p_l_id=23769&folderId=23758&name=DLFE-1002.pdf (accessed on 3 January 2018).
- Paing, J.; Guilbert, A.; Gagnon, V.; Chazarenc, F. Effect of climate, wastewater composition, loading rates, system age and design on performances of French vertical flow constructed wetlands: A survey based on 169 full scale systems. Ecol. Eng. 2015, 80, 46–52. [Google Scholar] [CrossRef]
- Fuchs, V.J.; Mihelcic, J.R.; Gierke, J.S. Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions. Water Res. 2011, 45, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ding, Y.; Wang, Y.; Wang, W.; Wang, G.; Zhou, B. Comparative study of nitrogen removal and bio-film clogging for three filter media packing strategies in vertical flow constructed wetlands. Ecol. Eng. 2015, 74, 1–7. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Tee, H.C.; Seng, C.E.; Noor, A.M.; Lim, P.E. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal. Sci. Total Environ. 2009, 407, 3563–3571. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Korboulewsky, N.; Prudent, P.; Domeizel, M.; Rolando, C.; Bonin, G. Feasibility of using an organic substrate in a wetland system treating sewage sludge: Impact of plant species. Bioresour. Technol. 2010, 101, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Gibert, O.; de Pablo, J.; Cortina, J.L.; Ayora, C. Chemical characterization of natural organic substrates for biological mitigation of acid mine drainage. Water Res. 2004, 38, 4186–4196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, J.; Leu, S. An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community. Bioresour. Technol. 2014, 173, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Sillanpaa, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Lee, D.J.; Nguyen, P.D.; Bui, X.T. Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles. Bioresour. Technol. 2014, 169, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Ribé, V.; Nehrenheim, E.; Odlare, M.; Gustavsson, L.; Berglind, R.; Forsberg, Å. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates. Waste Manag. 2012, 32, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.Y.; Shao, L.; Li, J.S.; Guo, S.; Han, M.Y.; Meng, J.; Liu, J.B.; Xu, F.X.; Lin, C. Comparison of greenhouse gas emission accounting for a constructed wetland wastewater treatment system. Ecol. Inform. 2012, 12, 85–92. [Google Scholar] [CrossRef]
- Sajdak, L.M.; Velazquez-Martí, B.; Lopez-Cortés, I. Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L. Renew. Energy 2014, 71, 545–552. [Google Scholar] [CrossRef]
- Directive, EU Urban Wastewater. Council directive 91/271/EEC of 21 May 1991, concerning urban waste water treatment (91/271/EEC). Off. J. Eur. Communities 1991, 40–52. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31991L0271 (accessed on 3 January 2018).
- Herrera-Melián, J.A.; González-Bordón, A.; Martín-González, M.A.; García-Jiménez, P.; Carrasco, M.; Araña, J. Palm tree mulch as substrate for primary treatment wetlands processing high strength urban wastewater. J. Environ. Manag. 2014, 139, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Santana Rodríguez, J.J.; Santana Hernández, F.J.; González González, J.E. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment. Corros. Sci. 2003, 45, 799–815. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Albuquerque, A.; Arendacz, M.; Gajewska, M.; ObarskaPempkowiak, H.; Randerson, P.; Kowalik, P. Removal of organic matter and nitrogen in a horizontal subsurface flow (HSSF) constructed wetland under transient loads. Water Sci. Technol. 2009, 60, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Konnerup, D.; Koottatep, T.; Brix, H. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257. [Google Scholar] [CrossRef]
- Fan, J.; Wang, W.; Zhang, B.; Guo, Y.; Ngo, H.H.; Guo, W.; Zhang, J.; Wu, H. Nitrogen removal in intermittently aerated vertical flow constructed wetlands: Impact of influent COD/N ratios. Bioresour. Technol. 2013, 143, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Zhi, W.; Yuan, L.; Ji, G.; He, C. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands. Environ. Sci. Technol. 2015, 49, 4575–4583. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; CRC Press: Boca Raton, FL, USA, 1996; p. 893. [Google Scholar]
- Sengupta, M.E.; Keraita, B.; Olsen, A.; Boateng, O.K.; Thamsborg, S.T.; Pálsdóttir, G.R.; Dalsgaard, A. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water. Water Res. 2012, 46, 3646–3656. [Google Scholar] [CrossRef] [PubMed]
- Zurita, F.; White, J.R. Comparative Study of Three Two-Stage Hybrid Ecological Wastewater Treatment Systems for Producing Reclaimed Water for Agricultural Reuse. Water 2014, 6, 213–228. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. Enhanced denitrification and organics removal in hybrid wetland columns: Comparative experiments. Bioresour. Technol. 2011, 102, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Carvalho, P.N.; Müller, J.A.; Manoj, V.R.; Dong, R. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Sci. Total Environ. 2016, 541, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.R.; Manshadi, F.D.; Karpiscak, M.M.; Gerba, C.P. The persistance and removal of enteric pathogens in constructed wetlands. Water Res. 2004, 38, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Headley, T.; Nivala, J.; Kassa, K.; Olsson, L.; Wallace, S.; Brix, H.; van Afferden, M.; Müller, R. Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: Effects of design and plants. Ecol. Eng. 2013, 61, 564–574. [Google Scholar] [CrossRef]
- Almuktar, A.; Scholz, M.; Al-Isawi, R.; Sani, A. Recycling of domestic wastewater treated by vertical-flow wetlands for irrigating Chillies and Sweet Peppers. Agric. Water Manag. 2015, 149, 1–22. [Google Scholar] [CrossRef]
- García-Delgado, C.; Eymar, E.; Contreras, J.I.; Segura, M.L. Effects of fertigation with purified urban wastewater on soil and pepper plant (Capsicum annuum L.) production, fruit quality and pollutant contents. Span. J. Agric. Res. 2012, 10, 209–221. [Google Scholar] [CrossRef]
- Kihila, J.; Mtei, K.M.; Njau, K.N. Wastewater treatment for reuse in urban agriculture; the case of Moshi Municipality, Tanzania. Phys. Chem. Earth 2014, 72–75, 104–110. [Google Scholar] [CrossRef]
- Bruch, I.; Fritsche, J.; Bänninger, D.; Alewell, U.; Sendelov, M.; Hürlimann, H.; Hasselbach, R.; Alewell, C. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresour. Technol. 2011, 102, 937–941. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Units |
---|---|---|
BOD5 | 444 ± 131, n: 59 | mg/L of O2 |
COD | 552± 162, n: 71 | mg/L of O2 |
TSS | 252 ± 133, n: 64 | mg/L |
Turbidity | 209 ± 97, n: 82 | NTU |
NH4+ | 68 ± 21, n: 60 | mg/L |
PO43− | 34 ± 8, n: 18 | mg/L |
FC | 1.91 (±1.48) × 107, n: 15 | CFU/100 mL |
Na+ | 155 ± 40, n: 10 | mg/L |
pH | 6.93 ± 0.27, n: 29 | pH units |
Electrical conductivity | 1665 ± 590, n: 29 | mS/cm |
Permanent hardness (Ca2+ + Mg2+) | 1.91 ± 0.22, n: 10 | meq/L |
Parameter | LR | Removal, % |
---|---|---|
HLR, L/m2·day | 146 ± 52 | - |
BOD, g/m2·day | 64 ± 23 | 68 ± 19 |
COD, g/m2·day | 88 ± 38 | 61 ± 14 |
TSS, g/m2·day | 35 ± 39 | 84 ± 8 |
Turbidity, NTUxL/m2·day | 65 ± 22 | 77 ± 12 |
NH4+, g/m2·day | 9 ± 3 | −21 ± 25 |
PO43-, g/m2·day | 4 ± 1 | −11 ± 19 |
Fecal coliforms, CFU/m2·day | 2.6 (±2.3) × 1010 | 75 ± 24 |
Parameter | Influent | VFgravel1 | VFgravel2 | VFmulch1 | VFmulch2 |
---|---|---|---|---|---|
COD, mg/L | 214 (±48) | 153 (±46) | 113 (±28) | 128 (±30) | 99 (±32) |
BOD, mg/L | 170 (±53) | 80 (±22) | 33 (±8) | 59 (±25) | 17 (±15) |
TSS, mg/L | 34 (±22) | 9 (±3) | - | 4 (±1) | - |
Turbidity, NTU | 23 (±8) | 13 (±1) | 4.5 (±2.7) | 3.1 (±1.2) | 1.3 (±0.5) |
NH4+, mg/L | 76 (±19) | 40 (±11) | 20 (±6) | 35 (±20) | 13 (±11) |
LR * Effl. conc. Removal | VFgravel2 | VFmulch2 | ||
---|---|---|---|---|
Continuous | Pulse | Continuous | Pulse | |
BOD | 76 (±48) | 22 (±26) | 101 (±59) | 17 (±16) |
30 (±17) | 14 (±14) | 11 (±13) | 3 (±2) | |
78 | 70 | 91 | 95 | |
COD | 118 (±44) | 81 (±63) | 137 (±63) | 66 (±39) |
106 (±34) | 100 (±23) | 99 (±32) | 103 (±23) | |
54 | 47 | 57 | 44 | |
TSS | 25 (±15) | 15 (±15) | 32 (±20) | 11 (±10) |
6 (±4) | 8 (±4) | 2 (±1) | 4 (±2) | |
84 | 73 | 93 | 84 | |
Turbidity | 26 (±16) | 21 (±21) | 32 (±21) | 17 (±14) |
4.1 (±2.6) | 6 (±3) | 1.3 (±0.5) | 2 (±1) | |
85 | 85 | 95 | 92 | |
NH4+ | 39 (±16) | 38 (±24) | 43 (±21) | 30 (±13) |
36 (±22) | 64 (±28) | 20 (±17) | 55 (±25) | |
53 | 33 | 73 | 41 | |
PO43−P | 6.2 (±1.96) | 5.5 (±4.2) | 7.2 (±2.9) | 4.2 (±2.6) |
10 (±3.9) | 10 (±2.9) | 11.7 (±5.5) | 10.4 (±3.6) | |
15 | 20 | −3 | 16 | |
FC | 5.3 (±8) × 1010 | 2.4 (±5) × 1010 | 10 (±17) × 1010 | 1.8 (±3) × 1010 |
8.4 (±13) × 104 | 1.8 (±1) × 105 | 9.7 (±16) × 104 | 1.1 (±1.3) × 104 | |
98 | 92.6 | 98 | 98.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Melián, J.A.; Borreguero-Fabelo, A.; Araña, J.; Peñate-Castellano, N.; Ortega-Méndez, J.A. Effect of Substrate, Feeding Mode and Number of Stages on the Performance of Hybrid Constructed Wetland Systems. Water 2018, 10, 39. https://doi.org/10.3390/w10010039
Herrera-Melián JA, Borreguero-Fabelo A, Araña J, Peñate-Castellano N, Ortega-Méndez JA. Effect of Substrate, Feeding Mode and Number of Stages on the Performance of Hybrid Constructed Wetland Systems. Water. 2018; 10(1):39. https://doi.org/10.3390/w10010039
Chicago/Turabian StyleHerrera-Melián, José Alberto, Alejandro Borreguero-Fabelo, Javier Araña, Néstor Peñate-Castellano, and José Alejandro Ortega-Méndez. 2018. "Effect of Substrate, Feeding Mode and Number of Stages on the Performance of Hybrid Constructed Wetland Systems" Water 10, no. 1: 39. https://doi.org/10.3390/w10010039
APA StyleHerrera-Melián, J. A., Borreguero-Fabelo, A., Araña, J., Peñate-Castellano, N., & Ortega-Méndez, J. A. (2018). Effect of Substrate, Feeding Mode and Number of Stages on the Performance of Hybrid Constructed Wetland Systems. Water, 10(1), 39. https://doi.org/10.3390/w10010039