Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Super Typhoon Jelawat
3.2. The 5–7 April Atmospheric River
3.3. Climatological Context of Typhoon-Remnant Snow Levels
3.4. Hydrogeomorphological Impacts
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric rivers, floods and the water resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Null, S.E.; Viers, J.H.; Mount, J.F. Hydrologic Response and Watershed Sensitivity to Climate Warming in California’s Sierra Nevada. PLOS ONE 2010, 5, e9932. [Google Scholar] [CrossRef] [PubMed]
- Rutz, J.J.; Steenburgh, W.J.; Ralph, F.M. Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Ralph, F.M.; Dettinger, M.D.; Cairns, M.M.; Galarneau, T.J.; Eylander, J. Defining “Atmospheric River”: How the Glossary of Meteorology Helped Resolve a Debate. Bull. Am. Meteorol. Soc. 2018, 99, 837–839. [Google Scholar] [CrossRef]
- Albano, C.; Dettinger, M.D.; Soulard, C.E. Influence of atmospheric rivers on vegetation productivity and fire patterns in the southwestern U.S. J. Geophys. Res. 2017, 122, 308–323. [Google Scholar] [CrossRef]
- Hatchett, B.J.; Burak, S.; Rutz, J.J.; Oakley, N.S.; Bair, E.H.; Kaplan, M.L. Avalanche Fatalities during Atmospheric River Events in the Western United States. J. Hydrometeorol. 2017, 18, 1359–1374. [Google Scholar] [CrossRef]
- Oakley, N.S.; Lancaster, J.T.; Kaplan, M.L.; Ralph, F.M. Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California. Nat. Hazards. 2017, 88, 327–354. [Google Scholar] [CrossRef]
- Waliser, D.; Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 2017, 10, 179. [Google Scholar] [CrossRef]
- Hecht, C.W.; Cordeira, J.M. Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California. Geophys. Res. Lett. 2017, 44, 9048–9058. [Google Scholar] [CrossRef]
- Neiman, P.J.; Ralph, F.M.; Moore, B.J.; Hughes, M.; Mahoney, K.M.; Cordeira, J.M.; Dettinger, M.D. The Landfall and Inland Penetration of a Flood-Producing Atmospheric River in Arizona. Part I: Observed Synoptic-Scale, Orographic, and Hydrometeorological Characteristics. J. Hydrometeorol. 2013, 14, 460–484. [Google Scholar]
- Guan, B.; Waliser, D.E.; Ralph, F.M.; Fetzer, E.J.; Neiman, P.J. Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett. 2016, 43, 2964–2973. [Google Scholar] [CrossRef]
- Hatchett, B.J.; Daudert, B.; Garner, C.B.; Oakley, N.S.; Putnam, A.E.; White, A.B. Winter Snow Level Rise in the Northern Sierra Nevada from 2008 to 2017. Water 2017, 9, 899. [Google Scholar] [CrossRef]
- Kapnick, S.; Hall, A. Observed Climate–Snowpack Relationships in California and their Implications for the Future. J. Clim. 2010, 23, 3446–3456. [Google Scholar] [CrossRef]
- Tullos, D. Opinion: How to achieve better flood risk governance in the United States. Proc. Natl. Acad. Sci. USA 2018, 115, 3731–3734. [Google Scholar] [CrossRef] [PubMed]
- Ralph, F.M.; Dettinger, M.D. Storms, Floods, and the Science of Atmospheric Rivers. Eos. Trans. Am. Geophys. Union. 2009, 92, 265–266. [Google Scholar] [CrossRef]
- Cordeira, J.M.; Ralph, F.M.; Moore, B.J. The Development and Evolution of Two Atmospheric Rivers in Proximity to Western North Pacific Tropical Cyclones in October 2010. Mon. Weather Rev. 2013, 141, 4234–4255. [Google Scholar] [CrossRef]
- Japanese Meteorological Agency Regional Specialized Meteorological Center Tokyo-Typhoon Center Best Track Data. Available online: https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html (accessed on 5 May 2018).
- MIMIC-TPW Version-2 Total Precipitable Water. Available online: ftp://ftp.ssec.wisc.edu/pub/mtpw2/data/ (accessed on 1 May 2018).
- Wimmers, A.J.; Velden, C.S. Seamless Advective Blending of Total Precipitable Water Retrievals from Polar-Orbiting Satellites. J. Appl. Meteorol. Climatol. 2010, 50, 1024–1036. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA) Daily (non-interpolated) Outgoing Longwave Radiation (OLR). Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.uninterp_OLR.html (accessed on 7 May 2018).
- COSMIC Suominet Real-time Integrated Atmospheric Water Vapor From GPS. Available online: http://suominet.ucar.edu/ (accessed on 25 April 2018).
- White, A.B.; Gottas, D.J.; Strem, E.T.; Ralph, F.M.; Neiman, P.J. An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Ocean. Technol. 2002, 19, 687–697. [Google Scholar] [CrossRef]
- Johnston, P.E.; Jordan, J.R.; White, A.B.; Carter, D.A.; Costa, D.M.; Ayers, T.E. The NOAA FM-CW snow-level radar. J. Atmos. Ocean. Technol. 2017, 34, 249–267. [Google Scholar] [CrossRef]
- White, A.B.; Gottas, D.J.; Henkel, A.F.; Neiman, P.J.; Ralph, F.M.; Gutman, S.I. Developing a performance measure for snow-level forecasts. J. Hydrometeorol. 2010, 11, 739–753. [Google Scholar] [CrossRef]
- White, A.B.; Anderson, M.L.; Dettinger, M.D.; Ralph, F.M.; Hinojosa, A.; Cayan, D.R.; Hartman, R.K.; Reynolds, D.W.; Johnson, L.E.; Schneider, T.L.; et al. A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Ocean. Technol. 2013, 30, 1585–1603. [Google Scholar] [CrossRef]
- California Department of Water Resources Data Exchange Center. Available online: http://cdec.water.ca.gov/queryTools.html (accessed on 25 April 2018).
- United States Geological Survey National Water Information System. Available online: https://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=gif_default&site_no=11266500&referred_module=sw&period=&begin_date=1916-10-01&end_date=2018-04-30 (accessed on 30 April 2018).
- Eastern Sierra Avalanche Center Avalanche Observations: Wet Slab in Fresno Bowl. Available online: http://esavalanche.org/content/wet-slab-fresno-bowl (accessed on 11 May 2018).
- Tuolumne Meadows Winter Conditions: Update for April 11, 2008. Available online: https://www.nps.gov/yose/blogs/update-for-april-11-2018.htm (accessed on 15 May 2018).
- Yosemite Park Experienced Significant Impacts from The Storm. Available online: https://www.nps.gov/yose/learn/news/yosemite-national-park-experienced-significant-impacts-from-storm.htm (accessed on 16 May 2018).
- Dacre, H.F.; Clark, P.A.; Martinez-Alvarado, O.; Stringer, M.A.; Lavers, D.A. How Do Atmospheric Rivers Form? Bull. Am. Meteorol. Soc. 2015, 96, 1243–1255. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G. Uncovering the role of the East Asian jet stream and heterogeneities in atmospheric rivers affecting the western United States. Proc. Natl. Acad. Sci. USA 2018. [Google Scholar] [CrossRef] [PubMed]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zhang, C. Madden-Julian Oscillation: bridging weather and climate. Bull. Am. Meteorol. Soc. 2013, 94, 1849–1870. [Google Scholar] [CrossRef]
- Scaife, A.A.; Athanassiadou, M.; Andrews, M.; Arribas, A.; Baldwin, M.; Dunstone, N.; Knight, J.; MacLachlan, C.; Manzini, E.; Müller, W.A.; et al. Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett. 2014, 41, 1752–1758. [Google Scholar] [CrossRef]
- Australian Government Bureau of Meteorology, Madden-Julian Oscillation Phase Diagram. Available online: http://www.bom.gov.au/climate/mjo/ (accessed on 4 June 2018).
- Mundhenk, B.D.; Barnes, E.A.; Maloney, E.D.; Baggett, C.F. Skillful empirical subseasonal forecasts of landfalling atmospheric river activity using the Madden-Julian Oscillation and the quasi-biennial oscillation. NPJ Clim. Atmos. Sci. 2018, 1, 20177. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Murakami, H.; Villarini, G.; Jia, L. The Pacific Meridional Mode and the Occurrence of Tropical Cyclones in the Western North Pacific. J. Clim. 2016, 29, 381–398. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Lei, X. Contributions of ENSO and East Indian Ocean SSTA to the Interannual Variability of Northwest Pacific Tropical Cyclone Frequency. J. Clim. 2011, 24, 509–521. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Z.; Zhang, W. Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones. J. Clim. 2018, 31, 853–862. [Google Scholar] [CrossRef]
- Yu, J.; Li, T.; Tan, Z.; Zhu, Z. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Clim. Dyn. 2016, 46, 865–877. [Google Scholar] [CrossRef]
- Baggett, C.F.; Barnes, E.A.; Maloney, E.D.; Mundhenk, B.D. Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett. 2017, 44, 7528–7536. [Google Scholar] [CrossRef]
- Ashford, J. Variations in California Climate and Lake Productivity During the Holocene. M.S. Thesis, University of California, Riverside, CA, USA, September 2017. Available online: https://cloudfront.escholarship.org/dist/prd/content/qt0xq7s90m/qt0xq7s90m.pdf (accessed on 10 May 2018).
- Luckman, B. Drop stones resulting from snow-avalanche deposition on lake ice. J. Glaciol. 1975, 14, 186–188. [Google Scholar] [CrossRef]
- Nesje, A.; Bakke, J.; Dahl, S.O.; Lie, Ø.; Bøe, A.G. A continuous, high-resolution 8500-yr snow-avalanche record from western Norway. Holocene 2002, 17, 269–277. [Google Scholar] [CrossRef]
- Seierstad, J.; Nesje, A.; Dahl, S.O.; Simonsen, J.R. Holocene glacier fluctuations of Grovabreen and Holocene snow-avalanche activity reconstructed from lake sediments in Grningstlsvatnet, western Norway. Holocene 2002, 12, 211–222. [Google Scholar] [CrossRef]
- Hatchett, B.J.; McEvoy, D.J. Exploring the origins of snow drought in the northern Sierra Nevada, California. Earth Interact. 2018, 22, 1–13. [Google Scholar] [CrossRef]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef] [PubMed]
- Nauslar, N.J.; Abatzoglou, J.T.; Marsh, P.T. The 2017 North Bay and Southern California Fires: A Case Study. Fire 2018. [Google Scholar] [CrossRef]
- Swain, D.L.; Langenbrunner, B.; Neelin, J.D.; Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 2018, 8, 427–433. [Google Scholar] [CrossRef]
- Sterle, K.; Hatchett, B.; Singletary, L.; Pohll, G. Hydroclimate Variability in Snow-fed River Systems: Local Water Managers’ Perspectives on Adapting to the New Normal. Bull. Am. Meteorol. Soc. 2018. Submitted. [Google Scholar]
- Brown, T.J.; Hall, B.L.; Westerling, A.L. The impact of twenty-first century climate change on wildland fire danger in the western United States: an applications perspective. Clim. Change 2004, 62, 365–388. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P.; Primeau, F.; McWilliams, J.C.; Pasquero, C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 2015, 1, e1500014. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.; Camargo, S.J.; Sobel, A.H.; Henderson, N.; Emanuel, K.A.; Kumar, A.; LaRow, T.E.; Murakami, H.; Roberts, M.J.; Scoccimarro, E.; et al. Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos. 2017, 122, 9721–9744. [Google Scholar] [CrossRef]
Precipitation Date(s) | Typhoon Name (Previous Study) | Typhoon Dates 1 |
---|---|---|
4 October 2008 | Jangmi | 24 September–5 October 2008 |
14 October 2009 | Melor [15] | 9 September–11 October 2009 |
24–25 October 2010 | Megi [16] | 13–24 October 2010 |
24–25 October 2010 | Chaba [16] | 23 October–1 November 2010 |
15–17 October 2016 | Songda | 3–13 October 2016 |
28–31 October 2016 | Haima | 23 October–1 November 2016 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatchett, B.J. Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA. Atmosphere 2018, 9, 233. https://doi.org/10.3390/atmos9060233
Hatchett BJ. Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA. Atmosphere. 2018; 9(6):233. https://doi.org/10.3390/atmos9060233
Chicago/Turabian StyleHatchett, Benjamin J. 2018. "Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA" Atmosphere 9, no. 6: 233. https://doi.org/10.3390/atmos9060233
APA StyleHatchett, B. J. (2018). Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA. Atmosphere, 9(6), 233. https://doi.org/10.3390/atmos9060233