Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS)
Abstract
:1. Introduction
2. Experiments
2.1. Neutron Reflectivity (NR)
2.2. Fourier Transform Infra-Red Reflection Absorption Spectroscopy (IRRAS)
2.3. Physical Setup and Gas Handling
2.4. Offline Brewster Angle Microscopy (BAM) with Surface Tension Measurements
3. Results and Discussion
3.1. BAM Film Characterisation
3.2. Single Component (GCB) Monolayer Oxidation
3.3. Two Component (GCB/PA) Monolayer Oxidation
3.4. Two Component (GCB/POA) Monolayer Oxidation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gill, P.S.; Graedel, T.E.; Weschler, C.J. Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev. Geophys. 1983, 21, 903. [Google Scholar] [CrossRef]
- Ellison, G.B.; Tuck, A.F.; Vaida, V. Atmospheric processing of organic aerosols. J. Geophys. Res. 1999, 104, 11633–11641. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, D.J.; Vaida, V. The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem. Rev. 2006, 106, 1445–1461. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ambaum, M.H.P. Thermal Physics of the Atmosphere, 1st ed.; Wiley-Blackwell: Reading, UK, 2010; ISBN 9780470745151. [Google Scholar]
- Barnes, G.T. Permeation through monolayers. Colloids Surf. A Physicochem. Eng. Asp. 1997, 126, 149–158. [Google Scholar] [CrossRef]
- Gaines, G.L. Insoluble Monolayers at the Liquid Gas. Interface; Interscience Publishers: Geneva, Switzerland, 1966. [Google Scholar]
- La Mer, V.K. Retardation of Evaporation by Monolayers: Transport. Processes; Academic Press Inc.: London, UK, 1962. [Google Scholar]
- La Mer, V.K. The transport of water through monolayers of long-chain n-paraffinic alcohols. J. Colloid Sci. 1964, 19, 673–684. [Google Scholar] [CrossRef]
- Benjamin, I. Chemical Reactions and Solvation at Liquid Interfaces: A Microscopic Perspective. Chem. Rev. 1996, 96, 1449–1476. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.D. Retardation of Water Drop Evaporation with Monomolecular Surface Films. J. Atmos. Sci. 1971, 28, 816–819. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.K.; Devakottai, B.; Souyri, A.; Huckaby, J.L. Evaporation characteristics of droplets coated with immiscible layers of nonvolatile liquids. Langmuir 1991, 7, 525–531. [Google Scholar] [CrossRef]
- Rideal, E.K. On the Influence of Thin Surface Films on the Evaporation of Water. J. Phys. Chem. 1924, 29, 1585–1588. [Google Scholar] [CrossRef]
- Gilman, J.B.; Eliason, T.L.; Fast, A.; Vaida, V. Selectivity and stability of organic films at the air-aqueous interface. J. Colloid Interface Sci. 2004, 280, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.-H.A.; Lee, W.-M.G. Effect of surfactant film on solubility of hydrophobic organic compounds in fog droplets. Chemosphere 1996, 33, 1391–1408. [Google Scholar] [CrossRef]
- Mmereki, B.T.; Chaudhuri, S.R.; Donaldson, D.J. Enhanced Uptake of PAHs by Organic-Coated Aqueous Surfaces. J. Phys. Chem. A 2003, 107, 2264–2269. [Google Scholar] [CrossRef]
- Mmereki, B.T.; Donaldson, D.J. Laser induced fluorescence of pyrene at an organic coated air–water interface. Phys. Chem. Chem. Phys. 2002, 4, 4186–4191. [Google Scholar] [CrossRef]
- Tomoaia-Cotisel, M.; Cadenhead, D.A. The interaction of procaine with stearic acid monolayers at the air/water interface. Langmuir 1991, 7, 964–974. [Google Scholar] [CrossRef]
- Forestieri, S.D.; Staudt, S.M.; Kuborn, T.M.; Faber, K.; Ruehl, C.R.; Bertram, T.H.; Cappa, C.D. Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics. Atmos. Chem. Phys. 2018, 18, 10985–11005. [Google Scholar] [CrossRef]
- Ruehl, C.R.; Davies, J.F.; Wilson, K.R. An interfacial mechanism for cloud droplet formation on organic aerosols. Science 2016, 351, 1447–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.; et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 2017, 546, 637–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfrang, C.; Rastogi, K.; Cabrera, E.; Seddon, A.M.; Dicko, C.; Labrador, A.; Plivelic, T.; Cowieson, N.; Squires, A.M. Complex Three-Dimensional Self-Assembly in Proxies for Atmospheric Aerosols. Nat. Commun. 2017, 8, 1724. [Google Scholar] [CrossRef] [PubMed]
- Wayne, R.P.; Barnes, I.; Biggs, P.; Burrows, J.P.; Canosa-Mas, C.E.; Hjorth, J.; Le Bras, G.; Moortgat, G.K.; Perner, D.; Poulet, G.; et al. The nitrate radical: Physics, chemistry, and the atmosphere. Atmos. Environ. 1991, 25, 1–203. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Cooke, M.C.; Utembe, S.R.; Archibald, A.T.; Derwent, R.G.; Xiao, P.; Percival, C.J.; Jenkin, M.E.; Morris, W.C.; Shallcross, D.E. Global modeling of the nitrate radical (NO3) for present and pre-industrial scenarios. Atmos. Res. 2015, 164–165, 347–357. [Google Scholar] [CrossRef]
- Pfrang, C.; King, M.D.; Canosa-Mas, C.E.; Wayne, R.P. Correlations for gas-phase reactions of NO3, OH and O3 with alkenes: An update. Atmos. Environ. 2006, 40, 1170–1179. [Google Scholar] [CrossRef]
- Chapleski, R.C., Jr.; Zhang, Y.; Troya, D.; Morris, J.R. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces. Chem. Soc. Rev. 2016, 45, 3731–3746. [Google Scholar] [CrossRef] [PubMed]
- Pfrang, C.; Martin, R.S.; Canosa-Mas, C.E.; Wayne, R.P. Gas-phase reactions of NO3 and N2O5 with (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol (‘leaf alcohol’), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. Phys. Chem. Chem. Phys. 2006, 8, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Pfrang, C.; Martin, R.S.; Nalty, A.; Waring, R.; Canosa-Mas, C.E.; Wayne, R.P. Gas-phase rate coefficients for the reactions of nitrate radicals with (Z)-pent-2-ene, (E)-pent-2-ene, (Z)-hex-2-ene, (E)-hex-2-ene, (Z)-hex-3-ene, (E)-hex-3-ene and (E)-3-methylpent-2-ene at room temperature. Phys. Chem. Chem. Phys. 2005, 7, 2506–2512. [Google Scholar] [CrossRef] [PubMed]
- Pfrang, C.; Baeza Romero, M.T.; Cabanas, B.; Canosa-Mas, C.E.; Villanueva, F.; Wayne, R.P. Night-time tropospheric chemistry of the unsaturated alcohols (Z)-pent-2-en-1-ol and pent-1-en-3-ol: Kinetic studies of reactions of NO3 and N2O5 with stress-induced plant emissions. Atmos. Environ. 2007, 41, 1652–1662. [Google Scholar] [CrossRef]
- King, M.D.; Rennie, A.R.; Thompson, K.C.; Fisher, F.N.; Dong, C.C.; Thomas, R.K.; Pfrang, C.; Hughes, A.V. Oxidation of oleic acid at the air–water interface and its potential effects on cloud critical supersaturations. Phys. Chem. Chem. Phys. 2009, 11, 7699–7707. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.C.; Rennie, A.R.; King, M.D.; Hardman, S.J.O.; Lucas, C.O.M.; Pfrang, C.; Hughes, B.R.; Hughes, A.V. Reaction of a Phospholipid Monolayer with Gas-Phase Ozone at the Air–Water Interface: Measurement of Surface Excess and Surface Pressure in Real Time. Langmuir 2010, 26, 17295–17303. [Google Scholar] [CrossRef] [PubMed]
- Pfrang, C.; Sebastiani, F.; Lucas, C.O.M.; King, M.D.; Hoare, I.D.; Chang, D.; Campbell, R.A. Ozonolysis of methyl oleate monolayers at the air–water interface: Oxidation kinetics, reaction products and atmospheric implications. Phys. Chem. Chem. Phys. 2014, 16, 13220–13228. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, F.; Campbell, R.A.; Pfrang, C. Complementarity of neutron reflectometry and ellipsometry for the study of atmospheric reactions at the air–water interface. RSC Adv. 2015, 5, 107105–107111. [Google Scholar] [CrossRef]
- Stewart, D.J.; Almabrok, S.H.; Lockhart, J.P.; Mohamed, O.M.; Nutt, D.R.; Pfrang, C.; Marston, G. The kinetics of the gas-phase reactions of selected monoterpenes and cyclo-alkenes with ozone and the NO3 radical. Atmos. Environ. 2013, 70, 227–235. [Google Scholar] [CrossRef]
- Jones, S.H.; King, M.D.; Ward, A.D.; Rennie, A.R.; Jones, A.C.; Arnold, T. Are organic films from atmospheric aerosol and sea water inert to oxidation by ozone at the air–water interface? Atmos. Environ. 2017, 161, 274–287. [Google Scholar] [CrossRef]
- Huang, Y.; Barraza, K.M.; Kenseth, C.M.; Zhao, R.; Wang, C.; Beauchamp, J.L.; Seinfeld, J.H. Probing the OH Oxidation of Pinonic Acid at the Air–Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS). J. Phys. Chem. A 2018, 122, 6445–6456. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, S.; Tinel, L.; Bianco, A.; Passananti, M.; Brigante, M.; Donaldson, D.J.; George, C. Atmospheric photochemistry at a fatty acid–coated air–water interface. Science 2016, 353, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Iannone, R.; Xiao, S.; Bertram, A.K. Reactive uptake studies of NO3 and N2O5 on alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry. Phys. Chem. Chem. Phys. 2009, 11, 7792–7803. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, F.; Campbell, R.A.; Rastogi, K.; Pfrang, C. Nighttime oxidation of surfactants at the air–water interface: Effects of chain length, head group and saturation. Atmos. Chem. Phys. 2018, 18, 3249–3268. [Google Scholar] [CrossRef]
- Tervahattu, H.; Juhanoja, J.; Kupiainen, K. Identification of an organic coating on marine aerosol particles by TOF-SIMS. J. Geophys. Res. 2002, 107, 4319. [Google Scholar] [CrossRef]
- Adams, E.; Allen, H. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry. Atmosphere 2013, 4, 315–336. [Google Scholar] [CrossRef] [Green Version]
- Laß, K.; Friedrichs, G. Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra. J. Geophys. Res. 2011, 116, C08042. [Google Scholar] [CrossRef]
- Facchini, M.C.; Rinaldi, M.; Decesari, S.; Carbone, C.; Finessi, E.; Mircea, M.; Fuzzi, S.; Ceburnis, D.; Flanagan, R.; Nilsson, E.D.; et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 2008, 35, L17814. [Google Scholar] [CrossRef]
- Lu, J.R.; Thomas, R.K.; Penfold, J. Surfactant layers at the air/water interface: Structure and composition. Adv. Colloid Interface Sci. 2000, 84, 143–304. [Google Scholar] [CrossRef]
- Campbell, R.A.; Saaka, Y.; Shao, Y.; Gerelli, Y.; Cubitt, R.; Nazaruk, E.; Matyszewska, D.; Lawrence, M.J. Structure of surfactant and phospholipid monolayers at the air/water interface modeled from neutron reflectivity data. J. Colloid Interface Sci. 2018, 531, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Skoda, M.W.A.; Thomas, B.; Hagreen, M.; Sebastiani, F.; Pfrang, C. Simultaneous neutron reflectometry and infrared reflection absorption spectroscopy (IRRAS) study of mixed monolayer reactions at the air–water interface. RSC Adv. 2017, 7, 34208–34214. [Google Scholar] [CrossRef] [Green Version]
- Nelson, A. Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J. Appl. Crystallogr. 2006, 39, 273–276. [Google Scholar] [CrossRef]
- King, M.D.; Rennie, A.R.; Pfrang, C.; Hughes, A.V.; Thompson, K.C. Interaction of nitrogen dioxide (NO2) with a monolayer of oleic acid at the air–water interface—A simple proxy for atmospheric aerosol. Atmos. Environ. 2010, 44, 1822–1825. [Google Scholar] [CrossRef]
- Woden, B.; Skoda, M.W.A.; Hagreen, M.; Pfrang, C. Electronic Supplementary Information for the Manuscript “Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS)”. 2018. Available online: http://researchdata.reading.ac.uk/168/15/Readme.txt (accessed on 12 September 2018 ).
- Zhang, X.; Barraza, K.M.; Beauchamp, J.L. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air–water interface. Proc. Natl. Acad. Sci. USA 2018, 115, 3255–3260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfrang, C.; Shiraiwa, M.; Pöschl, U. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles. Atmos. Chem. Phys. 2011, 11, 7343–7354. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Ammann, M.; Koop, T.; Pöschl, U. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA 2011, 108, 11003–11008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socorro, J.; Lakey, P.S.J.; Han, L.; Berkemeier, T.; Lammel, G.; Zetzsch, C.; Pöschl, U.; Shiraiwa, M. Heterogeneous OH Oxidation, Shielding Effects, and Implications for the Atmospheric Fate of Terbuthylazine and Other Pesticides. Environ. Sci. Technol. 2017, 51, 13749–13754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woden, B.; Skoda, M.W.A.; Hagreen, M.; Pfrang, C. Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS). Atmosphere 2018, 9, 471. https://doi.org/10.3390/atmos9120471
Woden B, Skoda MWA, Hagreen M, Pfrang C. Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS). Atmosphere. 2018; 9(12):471. https://doi.org/10.3390/atmos9120471
Chicago/Turabian StyleWoden, Ben, Maximilian W. A. Skoda, Matthew Hagreen, and Christian Pfrang. 2018. "Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS)" Atmosphere 9, no. 12: 471. https://doi.org/10.3390/atmos9120471
APA StyleWoden, B., Skoda, M. W. A., Hagreen, M., & Pfrang, C. (2018). Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS). Atmosphere, 9(12), 471. https://doi.org/10.3390/atmos9120471