Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park
Abstract
:1. Introduction
- What meteorological factors and air pollutants correlate with NAIC in urban areas?
- What are the correlations between NAIC and the main environmental factors? What are the main factors affecting NAIC?
- What is the order of the major environmental factors that impact NAIC?
2. Materials and Methods
2.1. Test Site
2.2. Data Collection
2.3. Data Processing
- IncMSE is equivalent to Mean Decrease Accuracy, which refers to the mean square error:
- IncNodePurity is equivalent to Mean Decrease Gini, which refers to node purity:
3. Results
3.1. NAIC Changes Month by Month
3.2. Correlation Analysis of Environmental Characteristics
3.3. Multiple Linear Regression of Environmental Characteristics
3.4. Random Forest Regression of Environmental Characteristics
4. Discussion
4.1. Influential Factors from Correlation Analysis and Multiple Linear Regression
4.2. Typical Environmental Factors from Random Forest
- Generation mechanism:High air humidity means high water content in the environment. According to the generation mechanism of air NAIs, they are the products of the combination of molecules with excess charges and water molecules and, thus, sufficient water content in the environment is required to form NAIs. More importantly, a certain amount of OH-(H2O)n forms by combining OH− with the water phase contained in the air. When the humidity is high, OH-(H2O)n increases and, thus, the NAIC also increases. Moreover, with an increase in air humidity, which weakens the transpiration of plant leaves, the opening of stomata promotes photosynthesis to generate NAIs.
- Extinction mechanismAn increase in air humidity changes the main force of particles colliding and coagulating to enhance the coagulating effect, so that small particles coagulate and settle into large particles, thereby reducing the loss of NAIs and maintaining the NAIC.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rong, S.H.; Tang, H.Q.; Ping, Y.H.; Zhi, H. Spatio-temporal changes of negative air ion concentrations in Beijing. J. Beijing For. Univ. 2005, 27, 35–39. [Google Scholar]
- Jovanić, B.R.; Jovanić, S.B. The Effect of High Concentration of Negative Ions in the Air on the Chlorophyll Content in Plant Leaves. Water Air Soil Pollut. 2001, 129, 259–265. [Google Scholar] [CrossRef]
- Yan, X.; Wang, H.; Hou, Z.; Wang, S.; Zhang, D.; Xu, Q.; Tokola, T. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas: A case study in Maiji, China. Urban For. Urban Green. 2015, 14, 636–645. [Google Scholar] [CrossRef]
- Krueger, A.P. The biological effects of air ions. Int. J. Biometeorol. 1985, 29, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Lee, G.W.M. Oxidation of volatile organic compounds by negative air ions. Atmos. Environ. 2004, 38, 6287–6295. [Google Scholar] [CrossRef]
- Kosenko, E.A.; Yug, K.; Stavrovskaya, I.G.; Sirota, T.V.; Kondrashova, M.N. The stimulatory effect of negative air ions and hydrogen peroxide on the activity of superoxide dismutase. FEBS Lett. 1997, 410, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.F.; Lin, J.M. Generation and determination of negative air ions. J. Anal. Test. 2017, 1, 6. [Google Scholar] [CrossRef]
- Iwama, H. Negative air ions created by water shearing improve erythrocyte deformability and aerobic metabolism. Indoor Air 2010, 14, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Yates, A.; Gray, F.B.; Misiaszek, J.I.; Wolman, W. Air ions: Past problems and future directions. Environ. Int. 1986, 12, 99–108. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.H. Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional change. J. Environ. Manag. 2009, 90, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, V.P.; Tsvetkov, V.D.; Litvinova, E.G.; Sirota, T.V.; Kondrashova, M.N. Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil. Russ. J. Plant Physiol. 2004, 51, 414–419. [Google Scholar] [CrossRef]
- Ling, X.; Jayaratne, R.; Morawska, L. Air ion concentrations in various urban outdoor environments. Atmos. Environ. 2010, 44, 2186–2193. [Google Scholar] [CrossRef] [Green Version]
- Pawar, S.D. Diurnal and seasonal air ion variability at rural station ramanandnagar (17°2′ N, 74° E), India. Aerosol Air Qual. Res. 2010, 10, 154–166. [Google Scholar] [CrossRef]
- Hõrrak, U.; Salm, J.; Tammet, H. Diurnal variation in the concentration of air ions of different mobility classes in a rural area. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Yan, J.; Yang, Z.; Wang, H. Spatial-temporal characteristics of spring air negative oxygen ions and its relationship with environmental factors in Hubei. Meteorol. Sci. Technol. 2015, 43, 728–733. [Google Scholar]
- Zhang, Z.P.; Yu, Y.W.; Zhang, M.R.; Du, Q.Z.; Chen, J.X.; Mao, F.C. Negative air ion concentration and environmental factors for Mount Tianmu of Zhejiang Province. J. Zhejiang For. Coll. 2008, 25, 481–485. [Google Scholar]
- Reiter, R. Part B Frequency distribution of positive and negative small ion concentrations, based on many years’ recordings at two mountain stations located at 740 and 1780 m ASL. Int. J. Biometeorol. 1985, 29, 223–231. [Google Scholar] [CrossRef]
- Dhanorkar, S.; Kamra, A.K. Diurnal and seasonal variations of the small-, intermediate-, and large-ion concentrations and their contributions to polar conductivity. J. Geophys. Res. Atmos. 1993, 98, 14895–14908. [Google Scholar] [CrossRef]
- Retalis, A.; Nastos, P.; Retalis, D. Study of small ions concentration in the air above Athens, Greece. Atmos. Res. 2009, 91, 219–228. [Google Scholar] [CrossRef]
- Retalis, D.; Pitta, A.; Psallidas, P. The conductivity of the air and other electrical parameters in relation to meteorological elements and air pollution in Athens. Meteorol. Atmos. Phys. 1991, 46, 197–204. [Google Scholar] [CrossRef]
- Vana, M.; Ehn, M.; Petäjä, T.; Vuollekoski, H.; Aalto, P.; Leeuw, G.D.; Ceburnis, D.; O’Dowd, C.D.; Kulmala, M. Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmos. Res. 2008, 90, 278–286. [Google Scholar] [CrossRef]
- Retalis, D.A. On the relationship between small atmospheric ions concentration and (1) smoke, (2) sulfur dioxide and (3) wind speed. Pure Appl. Geophys. 1977, 115, 575–581. [Google Scholar] [CrossRef]
- Li, S.; Lu, S.; Chen, B.; Pan, Q.; Zhang, Y.; Yang, X. Distribution characteristics and law of negative air ions in typical garden flora areas of Beijing. J. Food Agric. Environ. 2013, 11, 1239–1246. [Google Scholar]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.N.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Archer, K.J.; Kimes, R.V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 2008, 52, 2249–2260. [Google Scholar] [CrossRef]
- De’Ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Baets, B.D.; Verhoest, N.E.C.; Samson, R.; Degroeve, S.; Becker, P.D.; Huybrechts, W. Random forests as a tool for ecohydrological distribution modelling. Ecol. Model. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, R.; Shen, C.; Da, L. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environ. Monit. Assess. 2010, 169, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y. Exploration and Evaluation of Ecological Benefits of Urban Near-Natural Forest-Contrast with Artificial Plantations and Nature Forests. Master’s Thesis, East China Normal University, Shanghai, China, 2008. (In Chinese). [Google Scholar]
- Xu, M.; Chen, B.F.; Su, J.; Shi, X.; Pan, Y.; Zhou, S. Dynamic of negative air ions and its relationship to environmental factors in Maofeng Mountain, Guangzhou. Ecol. Environ. 2008, 17, 179–185. [Google Scholar]
- Wang, C. The Study of Tourism Resource Distribution, Causes and Development and Use of Negative Air Ion in Mount Huangshan. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2003. (In Chinese). [Google Scholar]
- Ye, C.; Wang, X. The study of the relationship between negative air ion concentration and meteorological conditions. Meteorol. Sci. Technol. 2000, 28, 51–52. (In Chinese) [Google Scholar]
- Tammet, H.; Hõrrak, U.; Laakso, L.; Kulmala, M. Factors of air ion balance in a coniferous forest according to measurements in Hyytiälä, Finland. Atmos. Chem. Phys. 2006, 6, 3377–3390. [Google Scholar] [CrossRef] [Green Version]
- Laakso, L.; Petäjä, T.; Lehtinen, K.E.J.; Kulmala, M. Ion production rate in a boreal forest based on ion, particle and radiation measurements. Atmos. Chem. Phys. Discuss. 2004, 4, 245–261. [Google Scholar] [CrossRef]
Environmental Influential Factors | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
r | r | r | r | ||
Meteorological factors | TEMP | 0.073 ** | 0.067 ** | −0.009 | −0.086 ** |
HUMI | 0.069 ** | 0.090 ** | 0.012 | −0.114 ** | |
PRES | −0.052 * | −0.003 | 0.013 | 0.002 | |
WIND.D | 0.012 | −0.016 | −0.016 | −0.020 | |
WIND.S | −0.035 | 0.020 | 0.008 | −0.009 | |
RAIN | 0.269 ** | 0.018 | 0.019 | 0.001 | |
SOLA | −0.048 | −0.004 | 0.002 | −0.080 ** | |
PAR | −0.246 ** | −0.001 | 0.013 | −0.009 | |
ULT | −0.020 | −0.035 | −0.002 | −0.092 ** | |
Air pollutants | PM10 | −0.074 * | −0.092 ** | 0.008 | 0.008 |
PM2.5 | −0.112 ** | −0.007 | 0.005 | 0.013 | |
SO2 | −0.049 | 0.005 | −0.022 | 0.003 | |
NOX | −0.069 ** | −0.010 | −0.003 | −0.005 | |
NO | −0.045 | 0.000 | 0.000 | −0.002 | |
CO | −0.059 * | 0.096 ** | 0.028 | 0.004 | |
O3 | 0.033 | 0.006 | 0.001 | −0.004 |
Coefficients | Estimate | Variance | t | p |
---|---|---|---|---|
PM2.5 | 0.003 | 0.130 | 0.021 | 0.983 |
T | −1.426 | 0.432 | −3.302 | <0.001 * |
H | 7.506 | 0.200 | 37.524 | <0.001 * |
S | −0.794 | 0.114 | −6.969 | <0.001 * |
(Intercept) | 655.165 | 22.729 | 28.825 | <0.001 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, S.; Zhang, X.; Han, Y.; Sun, W.; Liu, C.; Yin, S. Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park. Atmosphere 2018, 9, 463. https://doi.org/10.3390/atmos9120463
Miao S, Zhang X, Han Y, Sun W, Liu C, Yin S. Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park. Atmosphere. 2018; 9(12):463. https://doi.org/10.3390/atmos9120463
Chicago/Turabian StyleMiao, Si, Xuyi Zhang, Yujie Han, Wen Sun, Chunjiang Liu, and Shan Yin. 2018. "Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park" Atmosphere 9, no. 12: 463. https://doi.org/10.3390/atmos9120463
APA StyleMiao, S., Zhang, X., Han, Y., Sun, W., Liu, C., & Yin, S. (2018). Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park. Atmosphere, 9(12), 463. https://doi.org/10.3390/atmos9120463