Back-Calculation of Traffic-Related PM10 Emission Factors Based on Roadside Concentration Measurements
Abstract
:1. Introduction
2. Methods
2.1. Back-Calculation
2.1.1. Roadside Measurements
Sampling Site
Measurements
2.1.2. The OSPM Model
2.1.3. Multiple Regression
2.1.4. The Estimation of EFf,ne
2.2. Emission Models Recommended by the MEP
2.2.1. Exhaust Emission Model
2.2.2. Dust Emission Model
2.3. The Validation of Emission Factors
3. Results and Discussion
3.1. Roadside Concentration Increments on Clean and Polluted Days
3.2. Emission Factors Calculated Using the MEP Emission Model
3.3. Emission Factors Obtained via Back-Calculation
3.4. Comparison of Back-Calculated and Modeled Results
3.5. Comparison with Previous Studies
3.5.1. Fleet-Averaged Emission Factors
3.5.2. Emission Factors for Different Vehicle Types
3.6. Uncertainty Analysis of Emission Factors
3.6.1. Uncertainties of Back-Calculation
Dispersion Simulation
Measurements
Seasonal Biases
3.6.2. Uncertainties of Emission Models
Wear Emissions
The Estimation of SL
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
LDV | Light-duty vehicles |
MDV | Medium-duty vehicles |
HDV | Heavy-duty vehicles |
EFd | Emission factor for road dust |
EFe | Emission factor for vehicle exhaust |
EFf | Fleet-averaged emission factor |
EFf,ne | Fleet-averaged non-exhaust emission factor |
EFf,e | Fleet-averaged exhaust emission factor |
EFf,d | Fleet-averaged road dust emission factor |
AERMOD | American Meteorological Society/Environmental Protection Agency Regulatory Model |
CALPUFF | California Puff model |
ADMS | Advanced air dispersion model |
HIWAY | Highway air pollution model |
CAL3QHC | Third California Line Source Dispersion Model with queuing and hot spot calculations |
CALINE4 | Fourth California Line Source Dispersion Model |
OSPM | Operational Street Pollution Model |
SMHI | Swedish Meteorological and Hydrological Institute Model |
References
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Shen, X.; Yao, Z.; Zhang, Q.; Wagner, D.V.; Huo, H.; Zhang, Y.; Zheng, B.; He, K. Development of database of real-world diesel vehicle emission factors for china. J. Environ. Sci. 2015, 31, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; Subhasis, B.; Philip, M.F.; Michael, G.; Constantinos, S. Physical and chemical characteristics and volatility of PM in the proximity of a light-duty vehicle freeway. Aerosol. Sci. Technol. 2005, 39, 347–357. [Google Scholar]
- Gillies, J.A.; Gertler, A.W.; Sagebiel, J.C.; Dippel, W.A. On-road particulate matter (PM2.5 and PM10) emissions in the Sepulveda tunnel, Los Angeles, California. Environ. Sci. Technol. 2001, 35, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, A.J.; Harrison, R.M.; Boulter, P.G.; Mccrae, I.S. Estimation of particle resuspension source strength on a major London road. Atmos. Environ. 2007, 41, 8007–8020. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Cheng, X.; Lu, X.; Sun, D.; Wang, X. Estimation of PM10 in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China. J. Environ. Sci. 2014, 26, 197–204. [Google Scholar] [CrossRef]
- Wu, X.L. The Study of Air Pollution Emission Inventory in Yangtze Delta. Master’s Thesis, Fudan University, Shanghai, China, 30 May 2009. (In Chinese). [Google Scholar]
- CEDA Document Repository. Source Apportionment of Airborne Particulate Matter in the United Kingdom. 1999. Available online: http://cedadocs.ceda.ac.uk/992/ (accessed on 15 January 2017).
- Harrison, R.M.; Yin, J.; Mark, D.; Stedman, J.; Appleby, R.S.; Booker, J.; Moorcroft, S. Studies of the coarse particle (2.5–10 μm) component in UK urban atmospheres. Atmos. Environ. 2001, 35, 3667–3679. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévô, A.S.H. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W.; Clayton, R.; Proffitt, D. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos. Environ. 2003, 37, 5283–5293. [Google Scholar] [CrossRef]
- Wang, H.; Chen, C.; Huang, C.; Fu, L. On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Sci. Total Environ. 2008, 398, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhuang, G.; Cheng, S.; Wang, Y.; Li, J. Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing. Atmos. Environ. 2007, 41, 7485–7499. [Google Scholar] [CrossRef]
- Valotto, G.; Rampazzo, G.; Visin, F.; Gonella, F.; Cattaruzza, E.; Glisenti, A.; Formenton, G.; Tieppo, P. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy). Atmos. Environ. 2015, 122, 596–608. [Google Scholar] [CrossRef]
- Chen, Y.H.; Prinn, R.G. Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J. Geophys. Res. 2006, 111, 1984–2012. [Google Scholar] [CrossRef]
- Clarke, K.; Kwon, H.O.; Choi, S.D. Fast and reliable source identification of criteria air pollutants in an industrial city. Atmos. Environ. 2014, 95, 239–248. [Google Scholar] [CrossRef]
- Haupt, S.E.; Young, G.S.; Allen, C.T. A genetic algorithm method to assimilate sensor data for a toxic contaminant release. J. Comput. 2007, 2, 85–93. [Google Scholar] [CrossRef]
- Li, F.; Niu, J. An inverse approach for estimating the initial distribution of volatile organic compounds in dry building material. Atmos. Environ. 2005, 39, 1447–1455. [Google Scholar] [CrossRef]
- Chow, F.K.; Kosovic, B.; Chan, S. Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations. J. Appl. Meteorol. Clim. 2008, 47, 1553–1572. [Google Scholar] [CrossRef]
- Contini, D.; Cesari, D.; Conte, M.; Donateo, A. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Sci. Total Environ. 2016, 560–561, 131–140. [Google Scholar]
- Jaeckels, J.M.; Bae, M.S.; Schauer, J.J. Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environ. Sci. Technol. 2007, 41, 5763–5769. [Google Scholar] [CrossRef] [PubMed]
- Lan, A.Y.; Jiang, H. Source apportionment of heavy metals in sediment using CMB model. Adv. Mater. Res. 2013, 800, 127–131. [Google Scholar]
- Amato, F.; Nava, S.; Lucarelli, F.; Querol, X.; Alastuey, A.; Baldasano, J.M.; Pandolfi, M. A comprehensive assessment of PM emissions from paved roads: Real-world emission factors and intense street cleaning trials. Sci. Total Environ. 2010, 408, 4309–4318. [Google Scholar] [CrossRef] [PubMed]
- Kam, W.; Liacos, J.W.; Schauer, J.J.; Delfino, R.J.; Sioutas, C. On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions. Atmos. Environ. 2012, 61, 378–386. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. Guidelines for Environmental Impact Assessment Atmospheric Environment. 2008. Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/other/pjjsdz/200901/t20090105_133276.htm (accessed on 15 January 2017). (In Chinese)
- United States Environmental Protection Agency. User’s Guide to CAL3QHC Version 2.0: A Modeling Methodology for Predicting Pollutant Concentrations Near Roadway Intersections. 1992. Available online: http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=000033I9.txt (accessed on 15 January 2017).
- United States Environmental Protection Agency. User’s Guide for HIWAY, a Highway Air Pollution Model. 1975. Available online: http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000X6BE.txt (accessed on 15 January 2017).
- Benson, P.E. Caline4-a Dispersion Model for Predicting Air Pollutant Concentrations Near Roadways; Final report; California Department of Transportation and Federal Highway Administration: Sacramento, CA, USA, 1984.
- Hertel, O.; Berkowicz, R. Operational Street Pollution Model (OSPM); Evaluation of the Model on Data from St. Olavs Street in Oslo. DMU LBFT-Al35; National Environmental Research Institute: Roskilde, Denmark, 1989. [Google Scholar]
- Ferm, M.; Sjöberg, K. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmos. Environ. 2015, 119, 211–219. [Google Scholar] [CrossRef]
- Gao, Z.; Desjardins, R.L.; Flesch, T.K. Assessment of the uncertainty of using an inverse-dispersion technique to measure methane emissions from animals in a barn and in a small pen. Atmos. Environ. 2010, 44, 3128–3134. [Google Scholar] [CrossRef]
- Lushi, E.; Stockie, J.M. An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources. Atmos. Environ. 2009, 44, 1097–1107. [Google Scholar] [CrossRef]
- Yee, E. Inverse dispersion for an unknown number of sources: Model selection and uncertainty analysis. Isrn. Appl. Math. 2014, 2012, 500–519. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Z. Inverse calculation approaches for source determination in hazardous chemical releases. J. Loss Prev. Process Ind. 2011, 24, 293–301. [Google Scholar] [CrossRef]
- Ketzel, M.; Wåhlin, P.; Berkowicz, R.; Palmgren, F. Particle and trace gas emission factors under urban driving conditions in Copenhagen based on street and roof-level observations. Atmos. Environ. 2003, 37, 2735–2749. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W. Application of a multi-lag regression approach to determine on-road PM10 and PM2.5 emission rates. Atmos. Environ. 2003, 37, 5157–5164. [Google Scholar] [CrossRef]
- Swedish National Road and Transport Research Institute, Emission of Wear and Resuspension Particles in the Road Environment, 2003. Available online: https://www.vti.se/en/Publications/Publication/emissions-of-wear-and-resuspension-particles-in-th_673864 (accessed on 1 June 2017).
- Forsberg, B.; Hansson, H.C.; Johansson, C.; Areskoug, H.; Persson, K.; Järvholm, B. Comparative health impact assessment of local and regional particulate air pollutants in scandinavia. Ambio J. Hum. Environ. 2005, 34, 11–19. [Google Scholar] [CrossRef]
- Omstedt, G.; Bringfelt, B.; Johansson, C. A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. Atmos. Environ. 2005, 39, 6088–6097. [Google Scholar] [CrossRef]
- Rauterberg-wulff, E.A. Investigation into the Significance of Dust Resuspension for the PM10 Emission on a Main Road. Report Produced for the Senate Department of Urban Development, Environmental Protection and Technology. Berlin Technical University, 2000. Available online: http://www.dapple.org.uk/Private/DATA/DUST/Berlin%20resuspended%20dust%20report.pdf (accessed on 15 January 2017).
- Johansson, C.; Hadenius, A.; Johansson, P.-Å.; Jonson, T. Shape: The Stockholm Study on Health Effects of Air Pollution and Their Economic Consequences, Part I: NO2 and Particulate Matter in Stockholm, Concentrations and Population Exposure; Vaegverket Publikation: Stockholm, Sweden, 1999. [Google Scholar]
- Department for Environment Food & Rural Affairs. A Review of Emission Factors and Models for Road Vehicle Non-Exhaust Particulate Matter. TRL Report PPR065; 2006. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat15/0706061624_Report1__Review_of_Emission_Factors.PDF (accessed on 15 January 2017).
- Luhana, L.; Sokhi, R.; Warner, L.; Mao, H.; Boulter, P.; McCrae, I.S.; Wright, J.; Osborn, D. Measurement of Non-Exhaust Particulate Matter. 5th Framework PARTICULATES project. European Commission Directorate General Transport and Environment, 2004. Available online: http://lat.eng.auth.gr/particulates/deliverables/Particulates_D8.pdf (accessed on 15 January 2017).
- Shanghai Municipal Bureau of Quality and Technical Supervision. Cleaning Quality and Service Requirements for Roads, Public Squares and Accessorial Public Facilities. 2011. Available online: http://www.shzj.gov.cn/art/2011/2/9/art_2828_821.html (accessed on 15 January 2017). (In Chinese)
- Shanghai Statistics Bureau. Shanghai Statistical Yearbook. 2015. Available online: http://www.stats-sh.gov.cn/data/toTjnj.xhtml?y=2015 (accessed on 15 January 2017). (In Chinese)
- Assael, M.J.; Delaki, M.; Kakosimos, K.E. Applying the OSPM model to the calculation of PM10 concentration levels in the historical centre of the city of Thessaloniki. Atmos. Environ. 2008, 42, 65–77. [Google Scholar] [CrossRef]
- Berkowicz, R.; Ketzel, M.; Jensen, S.S.; Hvidberg, M.; Raaschou-Nielsen, O. Evaluation and application of OSPM for traffic pollution assessment for large number of street locations. Environ. Model. Softw. 2008, 23, 296–303. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. Technical Guides for Compilation of Air Pollutant Emission Inventory of Road Vehicles (Trial Edition). Beijing, China: Ministry of Environmental Protection of the People’s Republic of China, 2014. Available online: http://www.zhb.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090 (accessed on 15 January 2017). (In Chinese)
- Ministry of Environmental Protection of the People’s Republic of China. Technical Guides for Compilation of Road Dust Emission Inventory (Trial Edition). Beijing, China: Ministry of Environmental Protection of the People's Republic of China, 2014. Available online: http://www.zhb.gov.cn/gkml/hbb/bgg/201501/W020150107594588131490.pdf (accessed on 15 January 2017). (In Chinese)
- Huang, Y.M. Research on Estimation and Distribution Character of Urban Fugitive Dust. Master’s Thesis, East China Normal University, Shanghai, China, 2006. [Google Scholar]
- Zhang, X.W.; Zhu, M.S.; Cao, H.Z.; Wang, H.; Wang, L. Numerical simulation and analysis of pollutant dispersion in the resident district. Low Temp. Archit. Technol. 2008, 1, 121–123. (In Chinese) [Google Scholar]
- Zhuang, S.Q. Study on Mechanism of Gas Flow and Pollutant Dispersion around the Buildings. Master’s Thesis, Northeastern University, Shenyang, China, 2014. [Google Scholar]
- Health Effects Institute. Real-World Particulate Matter and Gaseous Emissions from Motor Vehicles in a Highway Tunnel. 2002. Available online: https://www.healtheffects.org/system/files/GertlerGrosjean.pdf (accessed on 1 June 2017).
- Kristensson, A.; Johansson, C.; Westerholm, R.; Swietlicki, E.; Gidhagen, L.; Wideqvist, U.; Vesely, V. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmos. Environ. 2004, 38, 657–673. [Google Scholar] [CrossRef]
- Handler, M.; Puls, C.; Zbiral, J.; Marr, I.; Puxbaum, H.; Limbeck, A. Size and composition of particulate emissions from motor vehicles in the Kaisermühlen-Tunnel, Vienna. Atmos. Environ. 2008, 42, 2173–2186. [Google Scholar] [CrossRef]
- Wang, B.G.; Zhang, Y.H.; Zhu, C.J.; Yu, K.H.; Chen, L.Y.; Chen, Z.Y. A study on city motor vehicle emission factors by tunnel test. J. Environ. Sci. 2001, 22, 55–59. (In Chinese) [Google Scholar]
- Hu, W.; Qin, Z. A study on PM10 emission factor of motor vehicle by tunnel test in Nanjing city. Chin. J. Environ. Eng. 2009, 3, 1852–1855. (In Chinese) [Google Scholar]
- Li, G.L.; Zhou, M.; Chen, C.H.; Wang, H.L.; Wang, Q.; Lou, S.R.; Qiao, L.P.; Tang, X.B.; Li, L.; Huang, H.Y.; et al. Characteristics of particulate matters and its chemical compositions during the dust episodes in Shanghai in spring, 2011. Chin. J. Environ. Sci. 2014, 35, 1644–1653. (In Chinese) [Google Scholar]
- Durbin, T.D.; Johnson, K.; Miller, J.W.; Maldonado, H.; Chernich, D. Emissions from heavy-duty vehicles under actual on-road driving conditions. Atmos. Environ. 2008, 42, 4812–4821. [Google Scholar] [CrossRef]
- Wang, J. Research on the discharging factor of vehicles in Xiamen. Mod. Sci. Instrum. 2005, 6, 61–64. (In Chinese) [Google Scholar]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Jonsson, P.; Swietlicki, E. Factors influencing PM10 emissions from road pavement wear. Atmos. Environ. 2009, 43, 4699–4702. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M. Estimation of emission factors of particle number and mass fractions from traffic at a site where mean vehicle speeds vary over short distances. Atmos. Environ. 2006, 35, 7125–7137. [Google Scholar] [CrossRef]
- Xie, S.D.; Zhang, Y.H.; Qi, Li.; Tang, X.Y. Spatial distribution of traffic-related pollutant concentration in street canyons. Atmos. Environ. 2003, 37, 3213–3224. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Denby, B.R.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Omstedt, G. A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: Road dust loading and suspension modelling. Atmos. Environ. 2013, 77, 283–300. [Google Scholar] [CrossRef]
- Kwak, J.H.; Kim, H.; Lee, J.; Lee, S. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Sci. Total Environ. 2013, 458–460, 273–282. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. AP-42: Compilation of Air Pollution Emission Factors. 1995. Available online: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors (accessed on 2 May 2017).
- Lükewille, A.; Bertok, I.; Amann, M.; Cofala, J.; Gyarfas, F.; Heyes, C.; Karvosenoja, N.; Schoepp, W. A Framework to Estimate the Potential and Costs for the Control of Fine Particulate Emissions in Europe; IIASA Interim Report IR-01–023; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2001. [Google Scholar]
- Fan, S.B.; Tian, G.; Li, G.; Shao, X. Emission Characteristics of Paved Roads Fugitive Dust in Beijing. Chin. J. Environ. Sci. 2007, 28, 2396–2399. (In Chinese) [Google Scholar]
- Zhang, D.X.; Fan, S.B.; Lin, Y.N.; Tian, L.D.; Guo, J.J. Evaluation of the effectiveness of road fugitive dust control measures during the APEC conference in Beijing. Acta Sci. Circumst. 2016, 36, 684–689. (In Chinese) [Google Scholar]
Pollution Level | Date | Speed (m/s) 1 | Wind Direction (°) 1 | Relative Humidity (%) 1 | Temperature (°C) 1 | PM10 (μg/m3) |
---|---|---|---|---|---|---|
Clean | 3/24 | 5.3 | 180 | 55 | 14 | 47.2~53.1 |
3/28 | 2.4 | 225 | 84 | 12 | 47.4~57.0 | |
4/11 | 2.8 | 45 | 43 | 17 | 47.3~48.8 | |
5/10 | 3.9 | 135 | 50 | 22 | 42.3~46.6 | |
5/17 | 3.3 | 135 | 27 | 29 | 44.5~49.0 | |
5/24 | 3.3 | 90 | 70 | 24 | 46.4~47.1 | |
5/30 | 4.3 | 315 | 83 | 22 | 55.8~63.5 | |
5/31 | 2.2 | 45 | 70 | 24 | 42.3~48.0 | |
Polluted | 3/29 | 1.5 | 225 | 60 | 12 | 114.0~118.5 |
4/18 | 2.1 | 180 | 49 | 19 | 115.2 | |
4/19 | 1.7 | 45 | 47 | 19 | 117.6~138.4 | |
4/21 | 2.5 | 90 | 43 | 17 | 92.7~95.1 | |
5/5 | 2.2 | 135 | 29 | 20 | 100.6~104.2 |
Class | BEF (g/km) | ϕj | γj | λj | θj |
---|---|---|---|---|---|
Motorcycle | 0.0017 | / | 1.25 | / | / |
LDV | 0.0052 | / | 1.25 | / | / |
MDV | 0.1040 | 1.00 | 1.10 | / | 0.68 |
HDV | 0.3595 | 1.00 | 1.10 | / | 0.68 |
Vehicle | LDV | MDV | HDV | Motorcycle | Fleet |
---|---|---|---|---|---|
EFe | 0.006 | 0.112 | 0.269 | 0.002 | 0.017 |
EFd | - | - | - | - | 1.423 |
EFf | - | - | - | - | 1.440 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Significance | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Motorcycle | 0.096 | 0.128 | 0.097 | 0.755 | 0.045 |
LDV | 0.121 | 0.021 | 0.701 | 5.857 | 0.000 |
MDV | 0.427 | 0.318 | 0.099 | 1.342 | 0.018 |
HDV | 0.445 | 0.389 | 0.105 | 1.143 | 0.026 |
Location | Year | Method | EFf | Speed (km/h) |
---|---|---|---|---|
Shanghai, China | 2015 | Roadside | 0.138 | 25 |
Los Angeles, USA [4] | 1996 | Tunnel test | 0.069 | 61 |
Pennsylvania, USA [53] | 1999 | Tunnel test | 0.087 | / |
Stockholm, Sweden [54] | 1998–1999 | Tunnel test | 0.091 | 45–70 |
London, UK [5] | 2000–2003 | Roadside | 0.081–0.103 | / |
Vienna, Austria [55] | 2005 | Tunnel test | 0.062 | / |
Zürich, Switzerland [10] | 2007 | Roadside | 0.071 | 30 |
Reiden, Switzerland [10] | 0.086 | 120 | ||
Barcelona, Spain [23] | 2009 | Roadside | 0.158 | / |
Guangzhou, China [56] | 1999 | Tunnel test | 0.64 | 49 |
Nanjing, China [57] | 2008 | Tunnel test | 0.34 | 60 |
Beijing, China [6] | 2011 | Model | 0.588 | / |
2012 | 0.587 | / |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Huang, Z.; Liu, Y.; Yu, Q.; Ma, W. Back-Calculation of Traffic-Related PM10 Emission Factors Based on Roadside Concentration Measurements. Atmosphere 2017, 8, 99. https://doi.org/10.3390/atmos8060099
Wang Y, Huang Z, Liu Y, Yu Q, Ma W. Back-Calculation of Traffic-Related PM10 Emission Factors Based on Roadside Concentration Measurements. Atmosphere. 2017; 8(6):99. https://doi.org/10.3390/atmos8060099
Chicago/Turabian StyleWang, Yuan, Zihan Huang, Yujie Liu, Qi Yu, and Weichun Ma. 2017. "Back-Calculation of Traffic-Related PM10 Emission Factors Based on Roadside Concentration Measurements" Atmosphere 8, no. 6: 99. https://doi.org/10.3390/atmos8060099
APA StyleWang, Y., Huang, Z., Liu, Y., Yu, Q., & Ma, W. (2017). Back-Calculation of Traffic-Related PM10 Emission Factors Based on Roadside Concentration Measurements. Atmosphere, 8(6), 99. https://doi.org/10.3390/atmos8060099