Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Features of Methane in Permafrost and Temporarily-Frozen Soils
3.2. Experimental Findings
4. Discussion
4.1. Evidence of Cryogenic Transport of Methane
4.2. Conceptual Model of Methane Transport in Freezing Soils
4.3. Implications for Methane Exchange between Permafrost and Atmosphere
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Data on the Properties and Distribution of Methane in Permafrost
Sedimentary Unit Number | Soil Composition | Depth, m | Itot 1 | CH4, nmol g−1 | CH4, cm3 kg−1 | δ13C(CH4), ‰ |
---|---|---|---|---|---|---|
4 | Fine silty sandy loam, rusty | 1.1 | 0.55 | 121.8 ± 6.3 | 2.7 ± 0.1 | −69.7 |
1.6 | 0.78 | 18.9 ± 0.6 | 0.4 ± 0.0 | |||
2.1 | 0.56 | 9.4 ± 0.5 | 0.2 ± 0.0 | |||
2.6 | 0.59 | 24.9 ± 1.1 | 0.6 ± 0.0 | |||
3 | Alternating fine and coarse sandy loam layers | 3.6 | 0.44 | 499.7 ± 17.4 | 11.2 ± 0.4 | −81.5 |
4.1 | 0.37 | 612.0 ± 42.7 | 13.7 ± 1.0 | −70.6 | ||
4.6 | 0.34 | 387.2 ± 13.7 | 8.7 ± 0.3 | −68.1 | ||
5.6 | 0.45 | 254.6 ± 9.0 | 5.7 ± 0.2 | |||
6.1 | 0.32 | 370.3 ± 13.6 | 8.3 ± 0.3 | |||
6.6 | 0.27 | 254.2 ± 10.7 | 5.7 ± 0.2 | −80.2 | ||
Thin silty sand | 7.1 | 0.24 | 359.6 ± 13.4 | 8.1 ± 0.3 | ||
Fine silty sandy loam with detritus | 7.6 | 0.32 | 362.1 ± 16.0 | 8.1 ± 0.4 | −83.1 | |
8.6 | 0.33 | 321.1 ± 8.3 | 7.2 ± 0.2 | |||
9.2 | 0.19 | 89.5 ± 2.4 | 2.0 ± 0.1 | |||
2 | Coarse sandy loam | 10.1 | 0.22 | 23.7 ± 0.8 | 0.5 ± 0.0 | −78.8 |
Coarse silty sandy loam | 11.1 | 0.19 | 158.3 ± 5.5 | 3.6 ± 0.1 | −84.1 | |
12.2 | 0.23 | 295.1 ± 8.7 | 6.6 ± 0.2 | −84.1 | ||
Fine sand | 13.1 | 0.24 | 310.3 ± 8.7 | 7.0 ± 0.2 | ||
14.5 | 0.26 | 313.8 ± 8.4 | 7.0 ± 0.2 | −84.4 | ||
Coarse sandy loam | 15.5 | 0.19 | 173.3 ± 5.1 | 3.9 ± 0.1 | ||
16 | 0.21 | 224.0 ± 5.7 | 5.0 ± 0.1 | |||
Fine sand | 16.5 | 0.24 | 107.8 ± 2.9 | 2.4 ± 0.1 | ||
17.1 | 0.22 | 72.9 ± 3.0 | 1.6 ± 0.1 | |||
17.5 | 0.27 | 105.8 ± 3.5 | 2.4 ± 0.1 | −83.1 | ||
18.1 | 0.29 | 123.8 ± 4.4 | 2.8 ± 0.1 | |||
19 | 0.21 | 79.5 ± 3.1 | 1.8 ± 0.1 | |||
Coarse sandy loam | 19.7 | 0.23 | 64.9 ± 2.4 | 1.5 ± 0.1 | ||
20.7 | 0.25 | 747.5 ± 51.1 | 16.7 ± 1.1 | −84.8 | ||
21.2 | 0.27 | 442.9 ± 16.0 | 9.9 ± 0.4 | |||
21.6 | 0.23 | 155.3 ± 4.6 | 3.5 ± 0.1 | |||
1 | Pebble filled with coarse sandy loam | 22.3 | 0.27 | 502.8 ± 14.9 | 11.3 ± 0.3 | −86.2 |
22.4 | 0.23 | 144.8 ± 4.9 | 3.2 ± 0.1 | −85.6 | ||
23.2 | 0.22 | 79.0 ± 2.5 | 1.8 ± 0.1 | −83.5 |
Year | Study Site | ALT 1, m | Borehole/Pit | Layer | Depth, m | CH4, nmol g−1 | CH4, cm3 kg−1 |
---|---|---|---|---|---|---|---|
2005 | Plahinsky Yar | 0.8 | 1001 | Active layer | 0 | 3.5 ± 0.0 | 0.0 ± 0.0 |
0.07 | 0 | 0 | |||||
0.14 | 1.6 ± 0.1 | 0.0 ± 0.0 | |||||
1002 | Active layer | 0 | 0 | 0 | |||
0.05 | 0.3 ± 0.2 | 0.0 ± 0.0 | |||||
0.12 | 0.2 ± 0.0 | 0.0 ± 0.0 | |||||
0.18 | 0.9 ± 0.0 | 0.0 ± 0.0 | |||||
0.23 | 1.6 ± 0.4 | 0.0 ± 0.0 | |||||
1003 | Active layer | 0 | 6.5 ± 2.0 | 0.2 ± 0.1 | |||
0.05 | 0 | 0 | |||||
0.12 | 0 | 0 | |||||
2006 | Old Allaiha | 0.44 | 5 | Transient layer | 0.8 | 3.1 ± 1.7 | 0.1 ± 0.0 |
0.9 | 3.3 ± 1.4 | 0.1 ± 0.0 | |||||
1 | 10.4 ± 1.8 | 0.2 ± 0.0 | |||||
Old Allaiha Floodplain | 0.44 | L1 | Transient layer | 0.44 | 14.3 ± 1.9 | 0.3 ± 0.0 | |
0.49 | 3.3 ± 1.4 | 0.1 ± 0.0 | |||||
0.59 | 118.2 ± 18.7 | 2.7 ± 0.4 | |||||
Khaptashinsky Yar | 0.44 | 3 | Active layer | 0.4 | 3.5 ± 0.9 | 0.1 ± 0.0 | |
0.44 | 4 | Active layer | 0.4 | 2.8 ± 0.5 | 0.1 ± 0.0 | ||
Khaptashinsky Yar, alas | 0.44 | A1 | Active layer | 0.37 | 489.1 ± 33.1 | 11.0 ± 0.7 | |
Transient layer | 0.47 | 389.6 ± 28.3 | 8.7 ± 0.6 | ||||
0.52 | 2.7 ± 0.7 | 0.1 ± 0.0 | |||||
A2 | Active layer | 0.29 | 193.7 ± 16.3 | 4.3 ± 0.4 | |||
0.39 | 12.7 ± 1.1 | 0.3 ± 0.0 | |||||
Transient layer | 0.49 | 270.6 ± 48.2 | 6.1 ± 1.1 | ||||
Khaptashinsky Yar, marine terrace | 0.32 | M3 | Transient layer | 0.37 | 128.7 ± 20.4 | 2.9 ± 0.5 | |
0.47 | 155.8 ± 25.9 | 3.5 ± 0.6 | |||||
0.57 | 94.6 ± 15.6 | 2.1 ± 0.4 | |||||
2007 | Kolyma Floodplain | 0.84 | 3,4 | Transient layer | 0.4 | 93.0 ± 4.5 | 2.1 ± 0.1 |
0.5 | 35.3 ± 1.9 | 0.8 ± 0.0 | |||||
0.6 | 381.9 ± 16.3 | 8.6±0.4 |
Year | Study Site | CLB 1, m | ALT 2, m | Borehole | Layer | Depth, m | CH4, nmol g−1 | CH4, cm3 kg−1 |
---|---|---|---|---|---|---|---|---|
1990 | Exposure 27 | 2.4 | 0.44 | 7 | Cover layer | 0.7 | 669.6 ± 85.9 | 15.0 ± 1.9 * |
2.3 | 26.8 ± 3.4 | 0.6 ± 0.1 * | ||||||
Yedoma | 3.8 | 0 | 0 * | |||||
1992 | Volchy Log | 2.8 | 0.44 | 7 | Cover layer | 0.9 | 29.9 ± 3.8 | 0.7 ± 0.1 * |
1.9 | 75.0 ± 9.6 | 1.7 ± 0.2 * | ||||||
2004 | Old Allaiha | 3.7 | 0.39 | 5 | Cover layer | 0.8 | 0 | 0 |
1.3 | 0 | 0 | ||||||
1.6 | 41.1 ± 4.4 | 0.9 ± 0.1 ** | ||||||
1.9 | 0 | 0 | ||||||
2006 | Khaptashinsky Yar | 2.2 | 0.44 | 2 | Cover layer | 0.6 | 2.8 ± 1.9 | 0.1 ± 0.0 |
0.7 | 41.8 ± 8.1 | 0.9 ± 0.2 | ||||||
0.8 | 163.4 ± 26.2 | 3.7 ± 0.6 | ||||||
Yedoma | 3.8 | 4.5 ± 1.4 | 0.1 ± 0.0 | |||||
0.44 | 3 | Cover layer | 0.5 | 48.7 ± 8.6 | 1.1 ± 0.2 | |||
0.6 | 155.4 ± 23.5 | 3.5 ± 0.5 | ||||||
0.7 | 83.8 ± 14.1 | 1.9 ± 0.3 | ||||||
0.44 | 4 | Cover layer | 0.5 | 4.7 ± 1.8 | 0.1 ± 0.0 | |||
0.6 | 5.0 ± 1.6 | 0.1 ± 0.0 | ||||||
2.1 | 3.7 ± 2.0 | 0.1 ± 0.1 | ||||||
Yedoma | 4.0 | 5.0 ± 2.5 | 0.1 ± 0.1 | |||||
2007 | Ust’-Omolonsky Yar | 2 | 0.41 | 1 | Cover layer | 0.5 | 1.7 ± 0.1 | 0.0 ± 0.0 |
0.6 | 8.7 ± 0.3 | 0.2 ± 0.0 | ||||||
0.7 | 7.0 ± 0.4 | 0.2 ± 0.0 | ||||||
1.3 | 14.4 ± 0.7 | 0.3 ± 0.0 | ||||||
1.7 | 5.2 ± 0.3 | 0.1 ± 0.0 | ||||||
0.41 | 2 | Cover layer | 1.3 | 0.6 ± 0.1 | 0.0 ± 0.0 | |||
1.7 | 1.0 ± 0.2 | 0.0 ± 0.0 | ||||||
Yedoma | 2.2 | 0 | 0 | |||||
2008 | Duvanny Yar | 1.5 | 0.41 | 1 | Cover layer | 1.5 | 3.0 ± 0.2 | 0.1 ± 0.0 ** |
References
- Zimov, S.A.; Voropaev, Y.V.; Semiletov, I.P.; Davidov, S.P.; Prosiannikov, S.F.; Chapin, F.S., III; Chapin, M.C.; Trumbore, S.; Tyler, S. North Siberian lakes: A methane source fueled by Pleistocene carbon. Science 1997, 277, 800–802. [Google Scholar] [CrossRef]
- Walter, K.M.; Edwards, M.E.; Grosse, G.; Zimov, S.A.; Chapin, F.S., III. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 2007, 318, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Walter Anthony, K.M.; Anthony, P.; Grosse, G.; Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 2012, 5, 419–426. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctiс shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S., III. Permafrost and the global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, O.A. Potential feedback of thawing permafrost to the global climate system through methane emission. Environ. Res. Lett. 2007, 2, 045016. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- Tarnocai, C.C.; Canadell, J.G.; Schuur, E.A.G.; Kuhry, P.; Mazhitova, G.; Zimov, S. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 2009, 23, GB2023. [Google Scholar] [CrossRef]
- Are, F.E. The problem of the emission of deep-buried gases into the atmosphere. In Permafrost Response on Economic Development, Environmental Security and Natural Resources; Paepe, R., Melnikov, V.P., van Overloop, E., Gorokhov, V.D., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 497–509. [Google Scholar]
- Lawrence, D.M.; Slater, A.G.; Tomas, R.A.; Holland, M.M.; Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett. 2008, 35, L11506. [Google Scholar] [CrossRef]
- Burke, E.J.; Jones, C.D.; Koven, C.D. Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. J. Clim. 2013, 26, 4897–4909. [Google Scholar] [CrossRef]
- Dmitrenko, I.A.; Kirillov, S.A.; Tremblay, L.B.; Kassens, H.; Anisimov, O.A.; Lavrov, S.A.; Razumov, S.O.; Grigoriev, M.N. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. J. Geophys. Res.-Oceans 2011, 116, C10027. [Google Scholar] [CrossRef]
- Bogoyavlensky, V. Gas blowouts on the Yamal and Gydan Peninsulas. GeoExPro 2015, 12, 74–78. [Google Scholar]
- Kizyakov, A.I.; Sonyushkin, A.V.; Leibman, M.O.; Zimin, M.V.; Khomutov, A.V. Geomorphological conditions of the gas-emission crater and its dynamics in Central Yamal. Earth’s Cryosphere 2015, 19, 15–25. [Google Scholar]
- Rivkina, E.M.; Gilichinsky, D.A. Methane as a paleoindicator of the dynamics of permafrost deposits. Lithol. Miner. Resour. 1996, 31, 396–399. [Google Scholar]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V. Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal peninsula, West Siberia. Polarforschung 1998, 68, 215–219. [Google Scholar]
- Kraev, G.; Rivkina, E.; Gilichinsky, D. Is the Permafrost Pool of Greenhouse Gases Disastrous? In Proceedings of the EGU General Assembly, Vienna, Austria, 15–20 April 2007. [Google Scholar]
- Kraev, G.N. Regularities of Methane Distribution in Permafrost of North-Eastern Siberia and the Forecast of Its Emission to the Atmosphere. Ph.D. Thesis, Institute of Geography, Russian Academy of Sciences, Moscow, Russia, 28 May 2010. [Google Scholar]
- Yakushev, V.S.; Chuvilin, E.M. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg. Sci. Technol. 2000, 31, 189–197. [Google Scholar] [CrossRef]
- Kraev, G.N.; Schulze, E.D.; Rivkina, E.M. Cryogenesis as a factor of methane distribution in layers of permafrost. Dokl. Earth Sci. 2013, 451, 882–885. [Google Scholar] [CrossRef]
- Skorobogatov, V.A.; Yakushev, V.S.; Chuvilin, E.M. Sources of Natural Gas within Permafrost in North-West Siberia. In Proceedings of the 7th International Permafrost Conference, Yellowknife, NT, Canada, 23–27 June 1998. [Google Scholar]
- Rivkina, E.; Shcherbakova, V.; Laurinavichius, K.; Petrovskaya, L.; Krivushin, K.; Kraev, G.; Pecheritsina, S.; Gilichinsky, D. Biogeochemistry of methane and methanogenic archae in permafrost. FEMS Microbiol. Ecol. 2007, 61, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Krivushin, K.V.; Shcherbakova, V.A.; Petrovskaya, L.E.; Rivkina, E.M. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Syst. Evol. Microbiol. 2010, 60, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova, V.; Rivkina, E.; Pecheritsyna, S.; Laurinavichius, K.; Suzina, N.; Gilichinsky, D. Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int. J. Syst. Evol. Microbiol. 2011, 61, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Rivkina, E.; Laurinavichius, K.; McGrath, J.; Tiedje, J.; Shcherbakova, V.; Gilichinsky, D. Microbial life in permafrost. Adv. Space Res. 2004, 33, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Rivkina, E.; Petrovskaya, L.; Vishnivetskaya, T.; Krivushin, K.; Shmakova, L.; Tutukina, M.; Meyers, A.; Kondrashov, F. Metagenomic analyses of the late Pleistocene permafrost—additional tools for reconstruction of environment conditions. Biogeosciences 2016, 13, 2207–2219. [Google Scholar] [CrossRef]
- Chuvilin, E.M. Migration of ions of chemical elements in freezing and frozen soils. Polar Rec. 1999, 35, 59–66. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Naletova, N.S.; Miklyaeva, E.C.; Kozlova, E.V. Factors affecting spreadability and transportation of oil in regions of frozen ground. Polar Rec. 2001, 37, 229–238. [Google Scholar] [CrossRef]
- Where is Frozen Ground? National Snow and Ice Data Center. Available online: https://nsidc.org/cryosphere/frozenground/whereis_fg.html (accessed on 15 June 2017).
- Sher, A.V. New data on late Cenozoic deposits of the Kolyma Lowland. Int. Geol. Rev. 1980, 22, 643–655. [Google Scholar] [CrossRef]
- Circumpolar Active Layer Monitoring Network. Available online: https://www2.gwu.edu/~calm/ (accessed on 7 June 2017).
- Shur, Y.; Hinkel, K.M.; Nelson, F.E. The transient layer: Implications for geocryology and climate-change science. Permafr. Periglac. Process. 2005, 16, 5–17. [Google Scholar] [CrossRef]
- Popov, A.I. Origin of the deposits of the Yedoma Suite on Primor’ye floodplain of northern Yakutia. Proceeding of the Permafrost Second International Conferenceon USSR Contribution, Yakutsk, Russia, 13–28 July 1973; Sanger, F.J., Hyde, P.J., Eds.; National Academy of Sciences: Washington, DC, USA, 1973; pp. 824–825. [Google Scholar]
- Schirrmeister, L.; Siegert, C.; Kunitsky, V.V.; Grootes, P.M.; Erlenkeuser, H. Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea region of Northern Siberia. Int. J. Earth Sci. 2002, 91, 154–167. [Google Scholar] [CrossRef]
- Schirrmeister, L.; Kunitsky, V.; Grosse, G.; Wetterich, S.; Meyer, H.; Schwamborn, G.; Babiy, O.; Derevyagin, A.; Siegert, C. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands—A review. Quat. Int. 2011, 241, 3–25. [Google Scholar] [CrossRef]
- Murton, J.G.; Goslar, T.; Edwards, M.E.; Bateman, M.D.; Danilov, P.P.; Savvinov, G.N.; Gubin, S.V.; Ghaleb, B.; Haile, J.; Kanevskiy, M.; et al. Palaeoenvironmental interpretation of Yedoma silt (Ice Complex) deposition as cold-climate loess, Duvanny Yar, Northeast Siberia. Permafrost Periglac. Process. 2015, 26, 208–288. [Google Scholar] [CrossRef]
- Veremeeva, A.; Gubin, S. Modern tundra landscapes of the Kolyma lowland and their evolution in the Holocene. Permafrost Periglac. Process. 2009, 20, 399–406. [Google Scholar] [CrossRef]
- McAuliffe, C. GC determination of solutes by multiple phase equilibration. Chemtechnology 1971, 1, 46–51. [Google Scholar]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Bernard, B.B.; Brooks, J.M.; Sackett, W.M. Natural gas seepage in the Gulf of Mexico. Earth Planet. Sci. Lett. 1976, 31, 48–54. [Google Scholar] [CrossRef]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [PubMed]
- Olefeldt, D.; Turetsky, M.D.; Crill, P.M.; McGuire, A.D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Chang. Biol. 2013, 19, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Tyutyunov, I.A. Phase Transformation of Water in Soils and the Nature of Migration and Heaving. In Proceedings of the Permafrost International Conference, Lafayette, IN, USA, 11–15 November 1963; USA National Academy of Sciences: Washington, DC, USA, 1963; pp. 234–238. [Google Scholar]
- Konrad, J.M.; Duquennoi, C. A model for water transport and ice lensing in freezing soils. Water Resour. Res. 1993, 29, 3109–3124. [Google Scholar] [CrossRef]
- Peppin, S.S.L.; Style, R.W. The physics of frost heave and ice-lens growth. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Miller, R.D. Freezing and heaving of saturated and unsaturated soils. Highw. Res. Rec. 1972, 393, 1–11. [Google Scholar]
- Wei, P.S.; Hsiao, S.Y. Pore shape development from the bubble captured by solidification front. Int. J. Heat Mass Trans. 2012, 55, 8129–8138. [Google Scholar] [CrossRef]
- Mackay, J.R. Pingo growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: A long-term field study. Géogr. Phys. Quat. 1998, 52, 271–323. [Google Scholar] [CrossRef]
- Mastepanov, M.; Sigsgaard, C.; Dlugokencky, E.J.; Houweling, S.; Ström, L.; Tamstorf, M.P.; Christensen, T.R. Large tundra methane burst during onset of freezing. Nature 2008, 456, 628–630. [Google Scholar] [CrossRef] [PubMed]
- Tagesson, T.; Mölder, M.; Mastepanov, M.; Sigsgaard, C.; Tamstorf, M.P.; Lund, M.; Falk, J.M.; Lindroth, A.; Christensen, T.R.; Ström, L. Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem. Glob. Chang. Biol. 2012, 18, 1928–1940. [Google Scholar] [CrossRef]
- Zona, D.; Gioli, B.; Commane, R.; Lindaas, J.; Wofsy, S.C.; Miller, C.E.; Dinardo, S.J.; Dengel, S.; Sweeney, C.; Karion, A.; et al. Cold season emissions dominate the Arctic tundra methane budget. PNAS 2015, 113, 40–45. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraev, G.; Schulze, E.-D.; Yurova, A.; Kholodov, A.; Chuvilin, E.; Rivkina, E. Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils. Atmosphere 2017, 8, 105. https://doi.org/10.3390/atmos8060105
Kraev G, Schulze E-D, Yurova A, Kholodov A, Chuvilin E, Rivkina E. Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils. Atmosphere. 2017; 8(6):105. https://doi.org/10.3390/atmos8060105
Chicago/Turabian StyleKraev, Gleb, Ernst-Detlef Schulze, Alla Yurova, Alexander Kholodov, Evgeny Chuvilin, and Elizaveta Rivkina. 2017. "Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils" Atmosphere 8, no. 6: 105. https://doi.org/10.3390/atmos8060105
APA StyleKraev, G., Schulze, E. -D., Yurova, A., Kholodov, A., Chuvilin, E., & Rivkina, E. (2017). Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils. Atmosphere, 8(6), 105. https://doi.org/10.3390/atmos8060105