Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of Study Area
2.2. Sample Collection
2.3. Experimental Method
2.4. Source Identification
2.5. Health Risk Assessment
3. Results and Discussion
3.1. Characteristics of Elements in PM2.5
3.2. The Source of Elements
3.3. Comparison with Other Cities and Standard
3.4. Health Risk Assessment of Elements in PM2.5
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kang, H.Q.; Zhu, B.; Su, J.F.; Wang, H.L.; Zhang, Q.C.; Wang, F. Analysis of a long-lasting haze episode in Nanjing, China. Atmos. Res. 2013, 120–121, 78–87. [Google Scholar] [CrossRef]
- Kong, S.F.; Lu, B.; Ji, Y.Q.; Zhao, X.Y.; Bai, Z.P.; Xu, Y.H.; Liu, Y.; Jiang, H. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. J. Environ. Monitor. 2012, 14, 791–803. [Google Scholar] [CrossRef] [PubMed]
- He, G.X.; Feng, H.; Zhang, H.R. The Diffusion and Attenuation Model of PM2.5 Pollution in Air. Math. Pract. Theory 2014, 455, 107–118. [Google Scholar]
- Tao, J.; Zhang, L.M.; Ho, K.; Zhang, R.J.; Lin, Z.J.; Zhang, Z.S.; Lin, M.; Cao, J.J.; Liu, S.X.; Wang, G.H. Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou—The largest megacity in South China. Atmos. Res. 2014, 135–136, 48–58. [Google Scholar] [CrossRef]
- Tseng, C.Y.; Lin, S.L.; Mwangi, J.K.; Yuan, C.S.; Wu, Y.L. Characteristics of Atmospheric PM2.5 in a Densely Populated City with Multi-Emission Sources. Aerosol Air Qual. Res. 2016, 16, 1–14. [Google Scholar] [CrossRef]
- Ragosta, M.; Caggiano, R.; Macchiato, M.; Sabia, S.; Trippetta, S. Trace elements in daily collected aerosol: Level characterization and source identification in a four-year study. Atmos. Res. 2008, 89, 206–217. [Google Scholar] [CrossRef]
- Lu, S.; Yao, Z.C.X.; Chen, X.H.; Wu, M.; Sheng, G.Y.; Fu, J.M.; Paul, D. The relationship between physicochemical characterization and the potential toxicity of fine particulates (PM2.5) in Shanghai atmosphere. Atmos. Environ. 2008, 42, 7205–7214. [Google Scholar]
- Lu, X.W.; Wang, L.J.; Lei, K.; Huang, J.; Zhai, Y.X. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, J.E.; Forbes, E.A.; Schroeder, R.J.; Ryan, D.E. The elemental composition and sources of house dust and street dust. Sci. Total Environ. 1986, 50, 217–221. [Google Scholar] [CrossRef]
- Chang, J.; Liu, M.; Li, X.H.; Lin, X.; Wang, L.L.; Gao, L. Primary research on health risk assessment of heavy metals in road dust of Shanghai. Zhongguo Huanjing Kexue/China Environ. Sci. 2009, 29, 548–554. [Google Scholar]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Ferreira, B.L.; De, M.E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.W.; Chang, Y.Y.; Xue, W.Z. Heavy metal contamination in dust from kindergartens and elementary schools in Xi’an, China. Environ. Earth Sci. 2014, 71, 2701–2709. [Google Scholar] [CrossRef]
- Bellinger, D.C. Teratogen update: Lead and pregnancy. Birth Defect. Res. Part A Clin. Mol. Teratol. 2005, 73, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, H.; Gou, X.; Luo, X.Q.; Yang, H.Y. Approaches of Health Risk Assessment for Heavy Metals Applied in China and Advance in Exposure Assessment Models: A Review. Ecol. Environ. Sci. 2014, 23, 1239–1244. [Google Scholar]
- Farago, M.E.; Kavanagh, P.; Blanks, R.; Kelly, J.; Kazantzis, G.; Thornton, I.; Simpson, P.R.; Cook, J.M.; Delves, H.T.; Hall, G.E. Platinum concentrations in urban road dust and soil, and in blood and urine in the United Kingdom. Analyst 1998, 123, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, S.G.; Marin, S.R.; Olave, S.G.; Urrutia, C. Determination of Trace Elements in Aerosol Samples Collected on Polycarbonate Filters by Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 1995, 60, 377–387. [Google Scholar] [CrossRef]
- Richard, A.; Bukowiecki, N.; Lienemann, P.; Furger, M.; Fierz, M.; Minguillón, M.C.; Weideli, B.; Figi, R.; Flechsig, U.; Appel, K.; et al. Quantitative sampling and analysis of trace elements in atmospheric aerosols: Impactor characterization and Synchrotron-XRF mass calibration. Atmos. Meas. Tech. 2010, 3, 1473–1485. [Google Scholar] [CrossRef]
- Alkarkhi, A.F.M.; Ahmad, A.; Azhar Mat Easa, N.I. Multivariate analysis of heavy metals concentrations in river estuary. Environ. Monit. Assess. 2008, 143, 179. [Google Scholar] [CrossRef] [PubMed]
- General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China. Reference Material Certificate—Soil composition analysis standard material, GBW07401-GBW07408; Geophysical and Geochemical Exploration Research Institute: Langfang, China, 2003.
- Anderson, P. Assessment and development of executive function (EF) during childhood. Child Neuropsychol. J. Norm. Abnorm. Dev. Child. Adolesc. 2002, 8, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R.; Mclennan, S.M. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Scientific Publications: Boston, MA, USA, 1995. [Google Scholar]
- Choi, J.C.; Lee, M.; Chun, Y.S.; Kim, J.Y.; Oh, S.N. Chemical composition and source signature of spring aerosol in Seoul, Korea. J. Geophys. Res. 2001, 106, 18067–18674. [Google Scholar] [CrossRef]
- US EPA. Soil Screening Guidance: Technical Background Document; Office of Soild Waste and Emergency Response: Washington, DC, USA, 1996.
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Soild Waste and Emergency Response: Washington, DC, USA, 2001.
- Zheng, N.; Liu, J.S.; Wang, Q.C.; Liang, Z.Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.B.; Sun, X.L.; Zhao, Y.G.; Lopez, B.N.; Chung, S.S.; Wu, S.C.; Cheung, K.C.; Wong, M.H. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city. Environ. Int. 2010, 36, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, S.Q.; Chen, X.M.; Lin, C.Y. Estimates of exposed dermal surface area of Chinese in view of human health risk assessment. J. Saf. Environ. 2008, 8, 152–156. [Google Scholar]
- Environmental Site Assessment Guideline, DB11/T656–2009; Bejing Municipal Administration of Quality and Technology Supervision: Beijing, China, 2009.
- US EPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual; Office of Soild Waste and Emergency Response: Washington, DC, USA, 2016.
- Guney, M.; Zagury, G.J.; Dogan, N.; Onay, T.T. Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J. Hazard. Mater. 2010, 182, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Gaur, R.; Kumar, S.; Sharma, C.S. Environmental and Human Health Risk Assessment of Benzo(a)pyrene Levels in Agricultural Soils from the National Capital Region, Delhi, India. Hum. Ecol. Risk Assess. 2013, 19, 118–125. [Google Scholar] [CrossRef]
- Tvermoes, B.E.; Banducci, A.M.; Devlin, K.D.; Kerger, B.D.; Abramson, M.M.; Bebenek, I.G.; Monnot, A.D. Screening level health risk assessment of selected metals in apple juice sold in the United States. Food Chem. Toxicol. 2014, 71, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Oanh, N.T.K.; Bich, T.L.; Tipayaroma, D.; Manandhar, B.R.; Prapat, P.; Simpson, C.D.; Sally Liu, L.-J. Characterization of particulate matter emission from open burning of rice straw. Atmos. Environ. 2011, 45, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.W.; Li, L.Y.; Wang, L.J.; Lei, K.; Huang, J.; Zhai, Y.X. Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos. Environ. 2009, 43, 2489–2496. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.X. Analysis of heavy metal pollution in atmospheric deposition. J. Xi’an Jiaotong Univ. 2014, 48, 118–124. [Google Scholar]
- Li, L.Z.; Shen, Z.X.; Du, N.; Zhang, T.; Cao, J.J.; Li, X.X.; Hu, C.S. Chemical composition of water-soluble species between haze and normal days over Xi’an. J. Grad. Sch. Chin. Acad. Sci. 2007, 24, 674–679. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook, 2009; China Statistics Press: Beijing, China, 2010.
- Chen, Y.; Sun, L.; Yun, Z.L.; Wu, G.N.; Xu, H.Y.; Chen, A.X. Heavy metal pollution of the urban street dust and health risk assessment in Xi’an. J. Saf. Environ. 2016, 16, 370–376. [Google Scholar]
- Marcazzan, G.M.; Valli, G.; Vecchi, R. Factors influencing mass concentration and chemical composition of fine aerosols during a PM high pollution episode. Sci. Total Environ. 2002, 298, 65–79. [Google Scholar] [CrossRef]
- Han, Y.M.; Du, P.X.; Cao, J.J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China. China National Ambient Air Quality Standard, GB 3095–2012; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- Zhai, Y.B.; Liu, X.T.; Chen, H.M.; Xu, B.B.; Zhu, L.; Li, C.T.; Zeng, G.M. Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Sci. Total Environ. 2014, 493, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.M.; He, K.B.; Ma, Y.L.; Chen, X.; Steven, H.C.; Tai, C.; Mulawa, P.A. Characteristics and sources of trace elements in ambient PM2.5 in Beijing. Environ. Sci. 2003, 24, 33–37. [Google Scholar]
- Fan, S.X.; Fan, T.; Yan, P.J.; Zheng, Y.F.; Jin, G.X.; Chen, S.G. Environmental Pollution Characteristics of Heavy Metal Elements of PM2.5 in Yinchuan. J. Desert Res. 2006, 26, 291–294. [Google Scholar]
- Wu, Y.S.; Fang, G.C.; Chen, J.C.; Rau, J.Y.; Huang, S.H. Ambient air particulate dry deposition, concentrations and ionic species study at Taichung Harbor near Taiwan Strait. Toxicol. Ind. Health 2005, 21, 177. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Nelson, E.D.; Field, M.P.; Ding, Q.; Li, H.; Sherrell, R.M.; Gigliotti, C.L.; Van Ry, D.A.; Glenn, T.R.; Eisenreich, S.J. Characterization of atmospheric trace elements on PM 2.5 particulate matter over the New York–New Jersey harbor estuary. Atmos. Environ. 2002, 36, 1077–1086. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Alastuey, A.; Viana, M.; Salvador, P.; Campa, A.S.D.L.; Artinano, B.; Rosa, J.D.L.; Gibbons, W. Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmos. Environ. 2006, 40, 6791–6803. [Google Scholar] [CrossRef]
- Na, K.; Cocker, D.R.I. Characterization and source identification of trace elements in PM2.5 from Mira Loma, Southern California. Atmos. Res. 2009, 93, 793–800. [Google Scholar] [CrossRef]
- Ravindra, K.; Stranger, M.; Grieken, R.V. Chemical characterization and multivariate analysis of atmospheric PM2.5 particles. J. Atmos. Chem. 2008, 59, 199–218. [Google Scholar] [CrossRef]
- Jiang, H.L.; Wang, Z.S.; Wu, X.F.; Guo, M.; Gu, Y.Y. Pollution Characteristic, Sources and Control of Arsenic in PM2.5 in China. J. Environ. Eng. Technol. 2015, 5, 464–470. [Google Scholar]
Elements | Winter (n = 16) | Summer (n = 15) | Annual Average | ||
---|---|---|---|---|---|
Range | Average | Range | Average | ||
As | 48–523 | 207 ± 202 | 8–55 | 42 ± 8 | 127 ± 160 |
Cd | 2–16 | 9 ± 4 | 2–16 | 6 ± 4 | 8 ± 4 |
Cr | 91–348 | 161 ± 95 | 64–405 | 142 ± 114 | 152 ± 103 |
Fe | 1122–7129 | 2086 ± 1.399 | 251–1932 | 1368 ± 251 | 1739 ± 1068 |
K | 2672–8227 | 4837 ± 1.663 | 887–4160 | 2388 ± 887 | 3570 ± 1800 |
Mn | 7–243 | 121 ± 44 | 25–148 | 67 ± 25 | 95 ± 45 |
Mo | 27–49 | 35 ± 7 | 3–33 | 27 ± 3 | 31 ± 7 |
Pb | 266–1189 | 595 ± 278 | 80–436 | 208 ± 80 | 408 ± 283 |
Ni | 14–29 | 18 ± 4 | 6–29 | 20 ± 6 | 19 ± 5 |
Zn | 806–5301 | 1958 ± 1297 | 712–3304 | 1593 ± 712 | 1775 ± 1044 |
Cu | 12–187 | 55 ± 52 | 1–81 | 26 ± 29 | 41 ± 21 |
Elements | Summer | Winter | ||||
---|---|---|---|---|---|---|
Anthropogenic Source (ng m−3) | Natural Source (ng m−3) | Anthropogenic Source Percentage (%) | Anthropogenic Source (ng m−3) | Natural Source (ng m−3) | Anthropogenic Source Percentage (%) | |
As | 30 | 10 | 75.13 | 180 | 20 | 88.47 |
Cd | 10 | 0.008 | 99.82 | 10 | 0.014 | 99.85 |
Cr | 170 | 10 | 92.24 | 120 | 20 | 87.93 |
K | 1130 | 1260 | 47.12 | 2910 | 1930 | 60.20 |
Mn | 30 | 40.9 | 38.91 | 60 | 60 | 48.43 |
Mo | 30 | 0.044 | 99.83 | 30 | 0.067 | 99.81 |
Pb | 210 | 20 | 91.25 | 590 | 2.39 | 99.60 |
Ni | 240 | 50 | 81.76 | 290 | 60 | 81.83 |
Zn | 1590 | 4.38 | 99.73 | 1950 | 6.69 | 99.66 |
Cu | 20 | 1.65 | 93.66 | 50 | 2.52 | 95.43 |
Cities | Type | As | Cd | Cr | Fe | K | Mn | Mo | Pb | Ni | Zn | Cu | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Xi’an | winter | 207 | 9 | 161 | 2086 | 4837 | 121 | 35 | 595 | 18 | 1958 | 55 | This study |
summer | 42 | 6 | 142 | 1368 | 2388 | 67 | 27 | 208 | 20 | 1593 | 26 | ||
Changsha | 41 | 800 | 952 | 1109 | [43] | ||||||||
Beijing | 98 | 310 | 490 | 50 | [44] | ||||||||
Guangzhou | 40 | 4 | 873 | 3872 | 75 | 476 | 49 | 644 | 63 | [37] | |||
Yinchuan | winter | 5 | 15 | 6360 | 139 | 191 | 254 | 15 | [45] | ||||
summer | 4 | 19 | 7300 | 183 | 66 | 148 | 3 | ||||||
Shanghai | Baoshan | 32 | 5 | 58 | 1187 | 113 | 149 | 61 | 681 | 54 | [7] | ||
Putuo | 28 | 4 | 15 | 950 | 51 | 143 | 42 | 349 | 29 | ||||
Huangpu | 36 | 2 | 19 | 682 | 48 | 75 | 31 | 344 | 33 | ||||
Jiading | 27 | 2 | 17 | 666 | 29 | 67 | 32 | 300 | 26 | ||||
Taiwan | 4 | 34 | 162 | 19 | 283 | 177 | 11 | [46] | |||||
New York, USA | 0 | 4 | 160 | 8 | 29 | 9 | [47] | ||||||
Milan, Italy | 6 | 310 | 25 | 150 | 170 | [40] | |||||||
Barcelona, Spain | 6 | 260 | 14 | 120 | 160 | 32 | [48] | ||||||
Southern California, USA | 33 | 11 | 553 | 213 | 14 | 0.050 | 39 | 113 | 26 | [49] | |||
Menen, Belgium | winter | 2 | 170 | 210 | 12 | 54 | 5 | 99 | 11 | [50] | |||
summer | 1 | 90 | 100 | 5 | 21 | 4 | 40 | 10 |
Elements | Ding (mg kg−1 day−1) | Dinh (mg kg−1 day−1) | Dderm (mg kg−1 day−1) | |||
---|---|---|---|---|---|---|
Adults | Children | Adults | Children | Adults | Children | |
As | 2.70 × 10−3 | 2.16 × 10−2 | 4.10 × 10−7 | 8.72 × 10−7 | 8.23 × 10−6 | 3.89 × 10−5 |
Cd | 8.81 × 10−5 | 7.05 × 10−4 | 1.33 × 10−8 | 2.84 × 10−8 | 2.68 × 10−7 | 1.27 × 10−6 |
Cr | 1.61 × 10−3 | 1.29 × 10−2 | 2.45 × 10−7 | 5.21 × 10−7 | 4.92 × 10−6 | 2.33 × 10−5 |
Mn | 1.60 × 10−3 | 1.28 × 10−2 | 2.42 × 10−7 | 5.16 × 10−7 | 4.87 × 10−6 | 2.30 × 10−5 |
Pb | 4.49 × 10−3 | 3.59 × 10−2 | 6.81 × 10−7 | 1.45 × 10−6 | 1.37 × 10−5 | 6.47 × 10−5 |
Ni | 2.97 × 10−4 | 2.37 × 10−3 | 4.50 × 10−8 | 9.57 × 10−8 | 9.04 × 10−7 | 4.27 × 10−6 |
Zn | 2.07 × 10−2 | 1.66 × 10−1 | 3.14 × 10−6 | 6.68 × 10−6 | 6.31 × 10−5 | 2.98 × 10−4 |
Cu | 7.48 × 10−4 | 5.99 × 10−3 | 1.13 × 10−7 | 2.41 × 10−7 | 2.28 × 10−6 | 1.08 × 10−5 |
Elements | LADD (mg kg−1 day−1) |
---|---|
As | 2.29 × 10−7 |
Cd | 7.46 × 10−9 |
Cr | 1.37 × 10−7 |
Ni | 2.51 × 10−8 |
Elements | HQing | HQinh | HQdermal | HI | ||||
---|---|---|---|---|---|---|---|---|
Adults | Children | Adults | Children | Adults | Children | Adults | Children | |
As | 9.01 | 7.21 × 101 | 1.02 × 10−3 | 3.22 × 10−3 | 6.69 × 10−2 | 3.16 × 10−1 | 9.08 | 72.41 |
Cd | 8.81 × 10−2 | 7.05 × 10−1 | 4.45 × 10−5 | 9.47 × 10−5 | 5.37 × 10−3 | 2.54 × 10−2 | 0.09 | 0.73 |
Cr | 3.23 × 10−1 | 2.58 | 8.55 × 10−3 | 1.82 × 10−2 | 1.97 × 10−2 | 9.30 × 10−2 | 0.35 | 2.69 |
Mn | 3.40 × 10−2 | 2.72 × 10−1 | 1.73 × 10−2 | 3.69 × 10−2 | 2.03 × 10−3 | 9.60 × 10−3 | 0.05 | 0.32 |
Pb | 1.28 | 1.03 × 101 | 1.93 × 10−4 | 4.12 × 10−4 | 2.61 × 10−2 | 1.23 × 10−1 | 1.31 | 10.39 |
Ni | 1.48 × 10−2 | 1.19 × 10−1 | 2.18 × 10−6 | 4.65 × 10−6 | 9.04 × 10−4 | 4.27 × 10−3 | 0.02 | 0.12 |
Zn | 6.91 × 10−2 | 5.52 × 10−1 | 7.13 × 10−6 | 9.27 × 10−6 | 1.05 × 10−3 | 4.97 × 10−3 | 0.07 | 0.56 |
Cu | 2.02 × 10−2 | 1.62 × 10−1 | 2.82 × 10−6 | 6.00 × 10−6 | 1.20 × 10−3 | 5.67 × 10−3 | 0.02 | 0.17 |
Total | 1.08 × 101 | 8.67 × 101 | 2.71 × 10−2 | 5.56 × 10−2 | 1.23 × 10−1 | 5.83 × 10−1 | 10.99 | 87.39 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Lei, Y.; Ren, H.; Gao, J.; Xu, H.; Shen, Z.; Zhang, Q.; Zheng, C.; Liu, H.; Zhang, R.; et al. Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China. Atmosphere 2017, 8, 91. https://doi.org/10.3390/atmos8050091
Liu P, Lei Y, Ren H, Gao J, Xu H, Shen Z, Zhang Q, Zheng C, Liu H, Zhang R, et al. Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China. Atmosphere. 2017; 8(5):91. https://doi.org/10.3390/atmos8050091
Chicago/Turabian StyleLiu, Pingping, Yali Lei, Huarui Ren, Jinjin Gao, Hongmei Xu, Zhenxing Shen, Qian Zhang, Chunli Zheng, Hongxia Liu, Renjian Zhang, and et al. 2017. "Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China" Atmosphere 8, no. 5: 91. https://doi.org/10.3390/atmos8050091
APA StyleLiu, P., Lei, Y., Ren, H., Gao, J., Xu, H., Shen, Z., Zhang, Q., Zheng, C., Liu, H., Zhang, R., & Pan, H. (2017). Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China. Atmosphere, 8(5), 91. https://doi.org/10.3390/atmos8050091