Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area and Data Collection
2.2. Study Design
2.2.1. Extraction of Characteristic Variables
2.2.2. Correlation Analysis
2.2.3. Impact Analysis of Spatial Scale on LUR Modeling and Mapping
3. Results
3.1. Preliminary Identification of PM2.5 Related Characteristic Variables
3.2. Performance Validation of LUR Models under Different Spatial Scales
3.3. PM2.5 Concentration Surfaces Mapped by LUR Models and Ordinary Kriging
4. Discussion
4.1. Results Analysis
4.2. Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dominici, F.; McDermott, A.; Zeger, S.L.; Samet, J.M. National maps of the effects of particulate matter on mortality: Exploring geographical variation. Environ. Health Perspect. 2003, 111, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory and respiratory diseases. J. Am. Med. Assoc. 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Kam, W.; Delfino, R.J.; Schauer, J.J.; Sioutas, C. A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. Environ. Sci.: Processes Impacts 2013, 15, 234–243. [Google Scholar]
- Dergham, M.; Billet, S.; Verdin, A.; Courcot, D.; Cazier, F.; Shirali, P.; Garçon, G. Toxicological impact of air pollution particulate matter (PM2.5) collected under urban, industrial or rural influence: Occurrence of Oxidative stress and inflammatory reaction in BEAS-2B human bronchial epithelial cells (corrected version). Adv. Mater. Res. 2011, 324, 489–492. [Google Scholar] [CrossRef]
- NASA (2010) New Map Offers a Global View of Health-Sapping Air Pollution. Available online: http://www.nasa.gov/topics/earth/features/health-sapping.html (accessed on 11 January 2013).
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from Satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 848–855. [Google Scholar] [CrossRef] [PubMed]
- The Lancet (2012) Global Burden of Disease Study 2010. Available online: http://www.thelancet.com/themed/global-burden-of-disease (accessed on 26 April 2013).
- Liu, S.; Zhang, K. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011? Sci. Total Environ. 2015, 538, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ganduglia, C.M.; Li, X.; Delclos, G.L.; Franzini, L.; Zhang, K. Short-term Associations of fine particulate matter components and emergency hospital admissions among a privately insured population in greater Houston. Atmos. Environ. 2016, 147, 369–375. [Google Scholar] [CrossRef]
- Liu, S.; Ganduglia, C.M.; Li, X.; Delclos, G.L.; Franzini, L.; Zhang, K. Fine particulate matter components and emergency department visits among a privately insured population in greater Houston. Sci. Total Environ. 2016, 566–567, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Pu, Q.; Bilal, M.; Weng, Q.; Zhai, L.; Nichol, J.E. High-resolution satellite mapping of fine particulates based on geographically weighted regression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 495–499. [Google Scholar] [CrossRef]
- Fang, X.; Zou, B.; Liu, X.; Troy, S.; Zhai, L. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sens. Environ. 2016, 186, 152–163. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; Hoogh, K.D.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Zou, B.; Wilson, J.G.; Zhan, F.B.; Zeng, Y. Air pollution exposure assessment methods utilized in epidemiological studies. J. Environ. Monit. 2009, 11, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef]
- Zou, B.; Luo, Y.; Wan, N.; Zheng, Z.; Sternberg, T.; Liao, Y. Performance comparison of LUR and OK in PM2.5 concentration mapping: A multidimensional perspective. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Wang, M.; Wan, N.; Wilson, J.G.; Fang, X.; Tang, Y. Spatial modeling of PM2.5 concentrations with a multifactorial radial basis function neural network. Environ. Sci. Pollut. Res. 2015, 22, 10395–10404. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, F.; Avol, E.; Kinney, P.; RJerrett, M.; Dvonch, T.; Lurmann, F.; Buckley, T.; Breysse, P.; Keeler, G.; de Villiers, T.; et al. Air pollution exposure assessment for epidemiologic studies of pregnant women and children: Lessons learned from the centers for children’s environmental health and disease prevention research. Environ. Health Perspect. 2005, 113, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.J.; Collins, S.; Elliot, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Reeuwijk, H.V.; Smallbone, K.; der Veen, A.V.; et al. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Mavko, M.E.; Tang, B.; George, L.A. A sub-neighborhood scale land use regression model for predicting NO2. Sci. Total Environ. 2008, 2, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bai, Z.; Su, D.; You, Y.; You, Y.; Li, H.; Quan, L. Application of land use regression to simulate ambient air PM10 and NO2 concentration in Tianjin City. China Environ. Sci. 2009, 29, 685–691. [Google Scholar]
- de Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; et al. Development of land Use regression models for particle composition in twenty study areas in Europe. Environ. Sci. Technol. 2013, 47, 5778–5786. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 2015, 137, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Hochadel, M.; Heinrich, J.; Gehring, U.; Morgenstern, V.; Kuhlbusch, T.; Link, E.; Wichmann, H.E.; Kramer, U. Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information. Atmos. Environ. 2006, 40, 542–553. [Google Scholar] [CrossRef]
- Ross, Z.; Jerrett, M.; Ito, K.; Tempalski, B.; Thurston, G.D. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos. Environ. 2007, 41, 2255–2269. [Google Scholar] [CrossRef]
- Ho, C.; Chan, C.; Cho, C.; Lin, H.; Lee, J.; Wu, C. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmos. Environ. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Lee, J.; Wu, C.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C. LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction. Sci. Total Environ. 2015, 514, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.; Zou, B.; Strenberg, T. A 3-step floating catchment area method for analyzing spatial access to health services. Int. J. Geogr. Inf. Sci. 2012, 26, 1073–1089. [Google Scholar] [CrossRef]
- Wan, N.; Zhan, F.B.; Zou, B.; Chow, E. A relative spatial access assessment approach for analyzing potential spatial access to colorectal cancer services in Texas. Appl. Geogr. 2012, 32, 291–299. [Google Scholar] [CrossRef]
- Zou, B.; Peng, F.; Wan, N.; Wilson, J.G.; Xiong, Y. Sulfur dioxide exposure and environmental justice: A multi-scale and source-specific perspective. Atmos. Pollut. Res. 2014, 5, 491–499. [Google Scholar] [CrossRef]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Hystad, P.; Setton, E.; Cervantes, A.; Poplawski, K.; Deschenes, S.; Brauer, M.; van Donkelaar, A.; Lamsal, L.; Martin, R.; Jerrett, M.; et al. Creating national air pollution models for population exposure assessment in Canada. Environ. Health Perspect. 2011, 119, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Tunno, B.J.; Michanowicz, D.R.; Shmool, J.L.C.; Kinnee, E.; Cambal, L.; Tripathy, S.; Gillooly, S.; Roper, C.; Chubb, L.; Clougherty, J.E. Spatial variation in inversion-focused vs 24-h integrated samples of PM2.5 and black carbon across Pittsburgh, PA. Expo. Sci. Environ. Epidemiol. 2016, 26, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Jiao, L.M.; Zhao, S.L.; Yuan, M.; Li, X.M.; Han, Y.Y.; Zhang, B.; Dong, T. Examining the impacts of land use on air quality from a spatio-temporal perspective in Wuhan, China. Atmosphere 2016, 7, 62. [Google Scholar] [CrossRef]
- U.S. EPA (2011). Available online: http://www.epa.gov/airquality/airdata/ad_data_daily.html (accessed on 12 January 2013).
- USGS (2011). Available online: http://seamless.usgs.gov (accessed on 13 January 2013).
- ESRI. Available online: http://www.openstreetmap.org/#map=5/51.500/-0.100 (accessed on 22 December 2016).
- U.S. census bureau (2010). Available online: http://www.census.gov/main/www/access.html (accessed on 10 February 2013).
- Mao, L.; Qiu, Y.; Kusano, C.; Xu, X. Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data. Environ. Sci. Pollut. Res. 2012, 19, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.; et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K. On lines and planes of closest fit to systems of points is space. Philos. Mag. J. Sci. 1901, 62, 559–572. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–291. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F-test. Biometrics 1995, 11, 1–42. [Google Scholar] [CrossRef]
- Zhang, K.; Larson, T.; Gassett, A.; Szpiro, A.; Daviglus, M.; Burke, G.; Kaufman, J.; Adar, S. Characterizing spatial patterns of airborne coarse particulate (PM10–2.5) mass and chemical components in three cities: The Multi-Ethnic Study of Atherosclerosis. Environ. Health Perspect. 2014, 122, 823–830. [Google Scholar]
- Fraser, M.P.; Yue, Z.; Buzcu, B. Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers. Atmos. Environ. 2003, 37, 2117–2123. [Google Scholar] [CrossRef]
- Zou, B.; Zheng, Z.; Wan, N.; Qiu, Y.H.; Wilson, J.G. An optimized spatial proximity model for fine particulate matter air pollution exposure assessment in areas of sparse monitoring. Int. J. Geogr. Inf. Sci. 2016, 30, 1–21. [Google Scholar] [CrossRef]
- Olvera, H.A.; Garcia, M.; Li, W.; Yang, H.; Amaya, M.A.; Myers, O.; Burchiel, S.W.; Berwick, M.; Pingitore, N.E., Jr. Principal component analysis optimization of a PM2.5 land use regression model with small monitoring network. Sci. Total Environ. 2012, 425, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Beckerman, B.S.; Jerrett, M.; Martin, R.V.; van Donkelaar, A.; Ross, Z.; Burnett, R.T. Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California. Atmos. Environ. 2013, 77, 172–177. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Liu, M.; Kuo, Y. Estimation of fine particulate matter in Taipei using land use regression and bayesian maximum entropy methods. Int. J. Environ. Res. Public Health 2011, 8, 2153–2169. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zou, B.; Pu, Q.; Guo, Y. Impact Analysis of Land Use/Cover on Air Pollution. J. Geogr. Sci. 2015, 3, 287–297. (In Chinese) [Google Scholar]
- Luong, C.; Zhang, K. An Assessment of Emissions Events Trends within the Greater Houston Area during 2003-2013. Air Qual., Atmos. Health 2016. [Google Scholar] [CrossRef]
- Chen, C.; Wu, C.; Yu, H.; Chan, C.; Cheng, T. Spatiotemporal modeling with temporal-invariant variogram subgroups to estimate fine particulate matter PM2.5 concentrations. Atmos. Environ. 2012, 54, 1–8. [Google Scholar] [CrossRef]
- Ryan, P.H.; LeMasters, G.K. A review of land-use regression models for characterizing intra-urban air pollution exposure. Inhalation Toxicol. 2007, 19, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Szyszkowicz, M.; Mahmud, M.; Tremblay, N. A semi-parametric regression model to estimate variability of NO2. Environ. Pollut. 2013, 2, 46–50. [Google Scholar] [CrossRef]
Variables | Measured Values | Variables | Measured Values | Variables | Measured Values | Variables | Measured Values |
---|---|---|---|---|---|---|---|
Forest11-5000 | 31.95 (0.16, 73.18) | M-urban13-5000 | 21.07 (5.37, 45.72) | Barren15-5000 | 0.64 (0.00, 3.48) | P-density31-5000 | 574.35 (155.31, 1719.81) |
Forest11-4500 | 30.25 (0.09, 70.08) | M-urban13-4500 | 22.09 (5.36, 46.08) | Barren15-4500 | 0.49 (0.00, 2.19) | P-density31-4500 | 568.81 (159.48, 1691.27) |
Forest11-4000 | 28.41 (0.10, 66.52) | M-urban13-4000 | 22.48 (5.59, 44.89) | Barren15-4000 | 0.40 (0.00, 2.25) | P-density31-4000 | 543.95 (163.63, 1609.78) |
Forest11-3500 | 26.30 (0.05, 63.76) | M-urban13-3500 | 22.47 (5.58, 42.55) | Barren15-3500 | 0.37 (0.00, 2.54) | P-density31-3500 | 554.16 (143.52, 1700.21) |
Forest11-3000 | 23.86 (0.05, 62.41) | M-urban13-3000 | 22.71 (5.69, 39.13) | Barren15-3000 | 0.33 (0.00, 2.34) | P-density31-3000 | 706.87 (128.20, 2536.17) |
Forest11-2500 | 21.46 (0.05, 56.23) | M-urban13-2500 | 22.93 (7.63, 41.70) | Barren15-2500 | 0.36 (0.00, 2.22) | P-density31-2500 | 552.94 (108.41, 1859.69) |
Forest11-2000 | 17.98 (0.00, 44.52) | M-urban13-2000 | 23.65 (10.23, 43.70) | Barren15-2000 | 0.36 (0.00, 2.07) | P-density31-2000 | 686.97 (85.69, 2558.86) |
Forest11-1500 | 12.96 (0.00, 35.46) | M-urban13-1500 | 24.25 (10.1, 42.78) | Barren15-1500 | 0.41 (0.00, 2.70) | P-density31-1500 | 609.19 (83.05, 1744.41) |
Forest11-1000 | 9.95 (0.00, 30.46) | M-urban13-1000 | 24.57 (7.87, 44.43) | Barren15-1000 | 0.31 (0.00, 3.26) | P-density31-1000 | 687.06 (94.90, 1652.37) |
Forest11-800 | 8.36 (0.00, 26.11) | M-urban13-800 | 25.56 (7.23, 47.13) | Barren15-800 | 0.24 (0.00, 2.39) | P-density31-800 | 635.68 (77.56, 1958.88) |
Forest11-500 | 5.80 (0.00, 18.82) | M-urban13-500 | 25.17 (10.78, 50.59) | Barren15-500 | 0.02 (0.00, 0.31) | P-density31-500 | 589.57 (24.73, 1359.31) |
Forest11-300 | 3.48 (0.00, 19.32) | M-urban13-300 | 23.55 (9.13, 41.76) | Barren15-300 | 0.00 (0.00, 0.00) | P-density31-300 | 555.93 (24.87, 1400.62) |
Forest11-100 | 0.75 (0.00, 10.45) | M-urban13-100 | 21.79 (0.00, 48.78) | Barren15-100 | 0.00 (0.00, 0.00) | P-density31-100 | 509.19 (24.67, 1389.24) |
O-urban12-5000 | 32.22 (11.06, 55.30) | H-urban14-5000 | 13.49 (3.05, 36.42) | T-length21-5000 | 458.93 (202.46, 1104.14) | H-density32-5000 | 201.90 (57.11, 669.74) |
O-urban12-4500 | 33.04 (12.87, 55.22) | H-urban14-4500 | 14.12 (2.92, 38.63) | T-length21-4500 | 390.49 (174.75, 977.80) | H-density32-4500 | 197.99 (56.30, 640.30) |
O-urban12-4000 | 33.79 (12.48, 54.16) | H-urban14-4000 | 14.91 (2.51, 41.99) | T-length21-4000 | 306.33 (123.91, 765.44) | H-density32-4000 | 187.03 (48.61, 592.81) |
O-urban12-3500 | 34.78 (10.95, 52.14) | H-urban14-3500 | 16.07 (2.36, 45.92) | T-length21-3500 | 238.98 (80.52, 605.11) | H-density32-3500 | 188.16 (40.68, 618.35) |
O-urban12-3000 | 36.45 (10.60, 56.73) | H-urban14-3000 | 16.65 (2.34, 49.67) | T-length21-3000 | 188.69 (53.10, 489.08) | H-density32-3000 | 240.04 (37.25, 913.73) |
O-urban12-2500 | 38.16 (10.45, 64.74) | H-urban14-2500 | 17.09 (3.01, 55.39) | T-length21-2500 | 131.09 (30.94, 328.16) | H-density32-2500 | 181.78 (33.11, 645.51) |
O-urban12-2000 | 40.16 (10.92, 71.96) | H-urban14-2000 | 17.85 (3.25, 59.95) | T-length21-2000 | 88.05 (23.51, 214.96) | H-density32-2000 | 225.16 (28.27, 872.09) |
O-urban12-1500 | 43.62 (11.07, 75.23) | H-urban14-1500 | 18.77 (3.25, 68.21) | T-length21-1500 | 52.19 (18.15, 128.37) | H-density32-1500 | 183.94 (27.67, 565.37) |
O-urban12-1000 | 46.22 (6.75, 79.01) | H-urban14-1000 | 18.95 (2.92, 77.30) | T-length21-1000 | 23.27 (9.53, 60.66) | H-density32-1000 | 211.81 (31.75, 560.28) |
O-urban12-800 | 47.20 (6.50, 77.84) | H-urban14-800 | 18.64 (1.83, 79.98) | T-length21-800 | 14.90 (5.76, 39.44) | H-density32-800 | 183.35 (24.03, 448.72) |
O-urban12-500 | 51.72 (6.49, 77.28) | H-urban14-500 | 17.29 (1.09, 76.29) | T-length21-500 | 5.65 (1.46, 15.22) | H-density32-500 | 186.44 (7.97, 450.35) |
O-urban12-300 | 56.43 (8.44, 88.25) | H-urban14-300 | 16.55 (2.62, 72.68) | T-length21-300 | 1.98 (0.22, 5.67) | H-density32-300 | 176.91 (8.02, 460.55) |
O-urban12-100 | 62.56 (0.00, 100.00) | H-urban14-100 | 14.90 (0.00, 69.78) | T-length21-100 | 0.21 (0.00, 0.68) | H-density32-100 | 169.69 (7.95, 456.81) |
D-road22 | 79.67 (0.18, 279.51) | D-coast41 | 55.39 (1.38, 125.15) |
Model ID | Spatial Scale | Model Predictors | Model R2 |
---|---|---|---|
1 | Best scale | M-urban13-100, P-density31-100, Forest11-5000 | 0.78 |
2 | 100 m | M-urban13-100 | 0.48 |
3 | 300 m | T-length21-300, H-urban14-300, D-road22 | 0.45 |
4 | 500 m | T-lenegth21-500, H-urban14-500, D-road22 | 0.51 |
5 | 800 m | T-length21-800, H-urban14-800 | 0.39 |
6 | 1000 m | H-urban14-1000 | 0.21 |
7 | 1500 m | D-coast41, O-urban12-1500, P-density31-1500 | 0.19 |
8 | 2000 m | H-density32-2000, O-urban12-2000, Forest11-2000 | 0.30 |
9 | 2500 m | H-density32-2500, H-urban14-2500 | 0.38 |
10 | 3000 m | H-density32-3000, H-urban14-3000 | 0.34 |
11 | 3500 m | H-density32-3500, D-coast41, H-urban14-3500 | 0.61 |
12 | 4000 m | H-density32-4000, D-coast41, H-urban14-4000 | 0.65 |
13 | 4500 m | H-density32-4500, D-coast41, H-urban14-4500 | 0.62 |
14 | 5000 m | H-density32-5000, D-coast41, H-urban14-5000 | 0.61 |
Model ID | MER (%) 1 | RMSE (μg·m−3) |
---|---|---|
1 | 11.84 | 1.43 |
2 | 17.22 | 2.65 |
3 | 16.73 | 2.45 |
4 | 16.78 | 1.97 |
5 | 19.93 | 3.13 |
6 | 28.26 | 4.16 |
7 | 28.37 | 4.35 |
8 | 27.32 | 3.87 |
9 | 19.30 | 3.26 |
10 | 26.32 | 3.69 |
11 | 14.37 | 1.72 |
12 | 15.03 | 1.80 |
13 | 15.58 | 1.87 |
14 | 13.21 | 1.58 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, L.; Zou, B.; Fang, X.; Luo, Y.; Wan, N.; Li, S. Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales. Atmosphere 2017, 8, 1. https://doi.org/10.3390/atmos8010001
Zhai L, Zou B, Fang X, Luo Y, Wan N, Li S. Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales. Atmosphere. 2017; 8(1):1. https://doi.org/10.3390/atmos8010001
Chicago/Turabian StyleZhai, Liang, Bin Zou, Xin Fang, Yanqing Luo, Neng Wan, and Shuang Li. 2017. "Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales" Atmosphere 8, no. 1: 1. https://doi.org/10.3390/atmos8010001
APA StyleZhai, L., Zou, B., Fang, X., Luo, Y., Wan, N., & Li, S. (2017). Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales. Atmosphere, 8(1), 1. https://doi.org/10.3390/atmos8010001