Evaluation of Two Cloud Parameterizations and Their Possible Adaptation to Arctic Climate Conditions
1. Introduction
2. Model Description
2.1. HIRHAM5-SCM Setup
2.2. Cloud Cover Parameterizations
Parameter | Default | Co-domain | Description (Meaning) |
---|---|---|---|
| 2 | | determines the shape of the symmetric beta distribution, which is used as PDF in the PS-Scheme |
K | 10 | | determines the efficiency of convective detrainment to increase the skewness of the beta distribution |
| | | avoids negative cloud water and ice contents and additionally controls the occurrence of clear-sky conditions in the PS-Scheme |
| 15 | | determines the efficiency of rain drop formation by collision and coalescence of cloud drops (autoconversion rate) |
| 5 | | determines the efficiency of rain drop growth by collision and coalescence with cloud drops as well as the efficiency of snow flake growth by aggregation of surrounding ice particles |
| 95 | | determines the efficiency of snow formation by aggregation of cloud ice particles (aggregation rate) |
| 0.1 | | determines the accretion rate of ice crystals by supercooled cloud drops (growth of snow crystals) through colliding and coalescing with them (riming) |
| | | cloud ice threshold, which determines the efficiency of the Bergeron–Findeisen process |
3. Evaluation of Two Cloud Cover Schemes
3.1. Evaluation with NP-35 Measurements
3.1.1. Three Specific Cases
Date | Lon(°E) | Lat(°N) | | ||
---|---|---|---|---|---|
NP-35 | SCM(PS) | SCM(RH) | |||
2007-10-15_00 | 101.86 | 81.60 | 100.0 | 89.6 | 100.0 |
10-15_12 | 102.22 | 81.56 | 100.0 | 100.0 | 100.0 |
11-01_00 | 102.06 | 82.42 | 100.0 | 100.0 | 100.0 |
11-01_12 | 101.86 | 82.40 | 0.0 | 64.6 | 100.0 |
11-15_00 | 97.52 | 82.10 | 0.0 | 0.0 | 0.0 |
11-15_12 | 97.55 | 82.11 | 0.0 | 100.0 | 100.0 |
12-01_00 | 97.56 | 83.02 | 0.0 | 100.0 | 100.0 |
12-01_12 | 97.31 | 82.99 | 100.0 | 100.0 | 100.0 |
12-15_00 | 97.69 | 83.40 | 0.0 | 0.0 | 0.0 |
12-15_12 | 97.92 | 83.45 | 0.0 | 0.0 | 0.0 |
2008-01-01_00 | 92.49 | 84.75 | 0.0 | 0.0 | 100.0 |
01-01_12 | 92.32 | 84.73 | 0.0 | 0.0 | 0.0 |
01-15_00 | 91.82 | 85.06 | 0.0 | 100.0 | 100.0 |
01-15_12 | 91.13 | 85.04 | 0.0 | 100.0 | 100.0 |
02-01_00 | 78.12 | 85.17 | 0.0 | 100.0 | 100.0 |
02-01_12 | 77.98 | 85.15 | 100.0 | 100.0 | 100.0 |
02-15_00 | 71.51 | 85.65 | 100.0 | 100.0 | 84.9 |
02-15_12 | 71.31 | 85.64 | 100.0 | 0.0 | 0.0 |
03-01_00 | 61.16 | 85.52 | 100.0 | 58.1 | 79.8 |
03-01_12 | 60.97 | 85.50 | 0.0 | 0.0 | 0.0 |
03-15_00 | 55.96 | 85.52 | 0.0 | 0.0 | 100.0 |
03-15_12 | 60.98 | 85.50 | 25.0 | 0.0 | 0.0 |
04-02_00 | 42.23 | 84.75 | 87.5 | 0.0 | 45.8 |
04-02_12 | 42.22 | 84.71 | 12.5 | 15.0 | 0.0 |
04-07_00 | 42.21 | 84.29 | 100.0 | 0.0 | 0.0 |
04-07_12 | 41.90 | 84.27 | 0.0 | 0.0 | 0.0 |
3.1.2. Statistics over All Cases
3.2. Arctic Clouds in the Reference Run
3.2.1. Annual Cycle of Cloud-Related Variables
3.2.2. Evaluation with Satellite Observations
RMSE(%) | |||||
---|---|---|---|---|---|
ISCCP-D2 | MODIS | SCM(PS-Scheme) | SCM(RH-Scheme) | ||
SON | ISCCP-D2 | — | 8.5 | 28.4 | 33.2 |
MODIS | 8.5 | — | 25.3 | 29.3 | |
DJF | ISCCP-D2 | — | 23.8 | 18.2 | 8.6 |
MODIS | 23.8 | — | 7.1 | 17.6 | |
MAM | ISCCP-D2 | — | 15.9 | 29.8 | 30.4 |
MODIS | 15.9 | — | 24.1 | 26.8 | |
JJA | ISCCP-D2 | — | 16.2 | 25.0 | 22.6 |
MODIS | 16.2 | — | 12.9 | 15.9 | |
WP | ISCCP-D2 | — | 20.0 | 15.7 | 13.4 |
MODIS | 20.0 | — | 9.2 | 17.5 | |
SP | ISCCP-D2 | — | 15.0 | 32.7 | 33.3 |
MODIS | 15.0 | — | 23.6 | 25.8 | |
all months | ISCCP-D2 | — | 17.5 | 26.3 | 26.1 |
MODIS | 17.5 | — | 18.4 | 22.3 |
4. Parameter Sensitivity Studies
| K | | | | | | | ||
---|---|---|---|---|---|---|---|---|---|
LWP | WP | 18 | 16 | 1 | 16 | 14 | 11 | 14 | −39 |
SP | 1 | 4 | −12 | 33 | 9 | −9 | 8 | −41 | |
all | 6 | 8 | −9 | 28 | 10 | −4 | 10 | −41 | |
IWP | WP | 26 | 23 | 27 | 33 | 26 | 45 | 30 | 30 |
SP | 17 | 17 | 14 | 14 | 22 | 38 | 15 | 25 | |
all | 20 | 20 | 18 | 21 | 23 | 40 | 20 | 25 | |
CWP | WP | 23 | 18 | 17 | 27 | 17 | 34 | 21 | 3 |
SP | 1 | 4 | −16 | 30 | 10 | 3 | 7 | −39 | |
all | 8 | 9 | −4 | 29 | 12 | 13 | 12 | −25 | |
| WP | −7 | 6 | 27 | 17 | 15 | 24 | 17 | 4 |
SP | −27 | 9 | −14 | 19 | 5 | −6 | 2 | −9 | |
all | −18 | 8 | 6 | 18 | 10 | 7 | 8 | −4 | |
Plasc | WP | 16 | 19 | 25 | 27 | 16 | 23 | 20 | 17 |
SP | −7 | −1 | −5 | −6 | −3 | −2 | 2 | 3 | |
all | 2 | 7 | 6 | 6 | 4 | 7 | 8 | 8 | |
Pconv | WP | — | — | — | — | — | — | — | — |
SP | 4 | 36 | 2 | −18 | 18 | −16 | 15 | 6 | |
all | 4 | 36 | 2 | −18 | 18 | −16 | 15 | 6 | |
Psnow | WP | 17 | 20 | 26 | 27 | 16 | 22 | 21 | 17 |
SP | 14 | 18 | 22 | 28 | 21 | 24 | 16 | 34 | |
all | 15 | 19 | 23 | 28 | 19 | 23 | 18 | 28 |
| K | | | | | | | ||
---|---|---|---|---|---|---|---|---|---|
LWP | WP | 14 | 15 | −12 | 18 | 15 | 6 | −15 | 30 |
SP | −9 | −3 | 11 | −44 | −15 | −3 | −31 | 21 | |
all | −3 | 2 | 5 | −27 | −7 | −1 | −27 | 23 | |
IWP | WP | 23 | 31 | −72 | 25 | 28 | 0 | 16 | 29 |
SP | 6 | 10 | −85 | −5 | −4 | −21 | −18 | 1 | |
all | 12 | 18 | −80 | 6 | 8 | −13 | −6 | 11 | |
CWP | WP | 19 | 29 | −42 | 20 | 22 | −1 | 3 | 31 |
SP | −10 | −3 | 2 | −45 | −19 | −17 | −30 | 14 | |
all | 0 | 8 | −13 | −23 | −6 | −12 | −19 | 20 | |
| WP | 20 | 8 | −92 | 15 | 8 | 2 | 3 | 22 |
SP | 31 | −7 | −57 | −28 | −16 | −9 | −9 | −3 | |
all | 26 | 0 | −72 | −10 | −7 | −4 | −4 | 8 | |
Plasc | WP | 23 | 26 | 34 | 19 | 24 | 23 | 18 | 26 |
SP | −1 | −5 | −14 | 5 | 3 | −3 | 0 | 4 | |
all | 8 | 6 | 4 | 10 | 11 | 6 | 6 | 12 | |
Pconv | WP | — | 100 | — | — | — | — | — | — |
SP | 30 | 6 | −14 | 28 | 4 | 12 | 10 | 4 | |
all | 30 | 8 | 14 | 28 | 4 | 12 | 10 | 4 | |
Psnow | WP | 24 | 25 | 19 | 17 | 25 | 23 | 18 | 27 |
SP | 17 | 15 | 59 | 3 | 17 | 13 | 15 | 18 | |
all | 19 | 19 | 22 | 9 | 20 | 17 | 16 | 22 |
4.1. Modified Adjustment Parameters of PS-Scheme
4.2. Modified Tuning Parameters of Cloud Microphysics
Parameter | Changes due to lower parameter value | Changes due to higher parameter value |
---|---|---|
| 1.5 | 20 |
| | |
| effect is small (large) for | |
| | |
| ||
| | |
| | |
effect is more pronounced than for higher | | |
| | |
| and | |
| 5 | 100 |
| | |
| effect is large (small) for | |
| ||
| ||
| | |
| | |
where effect is significant for | | |
| ||
|
5. Conclusions
- • Lower values of
, the parameter that determines the shape of the symmetric beta distribution in the PS-Scheme, result in a reduction of total cloud cover (
best fit to MODIS), decreased underestimation of cloud ice, but increased overestimation of cloud water and precipitation.
- • Higher values of the minimum cloud water content
result in a reduction of clouds (even up to their total disappearance) and consequently decreased overestimation of total cloud cover (
best fit to MODIS), but also in increased overestimation/underestimation of cloud water/cloud ice and increased overestimation of precipitation. Instead of applying the same value of
to cloud water and cloud ice, it is suggested using different thresholds, since cloud water contents are typically about one magnitude higher than cloud ice contents in Arctic clouds (e.g., [28,47]).
- • Higher values of the autoconversion rate
, which controls the local rain production and thus the cloud lifetime, result in decreased overestimation of total cloud cover (
best fit to MODIS), decreased overestimation/underestimation of cloud water/cloud ice, but increased overestimation of precipitation as was expected.
- • Lower values of the cloud ice threshold
, which controls the efficiency of the Bergeron–Findeisen process, turned out to be most suitable for reducing the overestimation of total cloud cover (
best fit to MODIS) and result additionally in decreased overestimation/underestimation of cloud water/cloud ice, but also increased overestimation of precipitation.
Acknowledgments
References
- Schneider, S.H. Cloudiness as a global climate feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci. 1972, 29, 1413–1422. [Google Scholar] [CrossRef]
- Minnett, P.J. The influence of solar zenith angle and cloud type on cloud radiative forcing at the surface in the Arctic. J. Clim. 1999, 12, 147–158. [Google Scholar] [CrossRef]
- Shupe, M.D.; Intrieri, J.M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 2004, 17, 616–628. [Google Scholar] [CrossRef]
- Hu, R.M.; Blanchet, J.P.; Girard, E. The effect of aerosol on surface cloud radiative forcing in the Arctic. Atmos. Chem. Phys. Discuss. 2005, 5. [Google Scholar] [CrossRef]
- Gorodetskaya, I.V.; Tremblay, L.B.; Liepert, B.; Cane, M.A.; Cullather, R.I. The influence of cloud and surface properties on the Arctic ocean shortwave radiation budget in coupled models. J. Clim. 2008, 21. [Google Scholar] [CrossRef]
- Lee, S.S.; Donner, L.J.; Phillips, V.T.J. Sensitivity of aerosol and cloud effects on radiation to cloud types: Comparison between deep convective clouds and warm stratiform clouds over one-day period. Atmos. Chem. Phys. 2009, 9. [Google Scholar] [CrossRef]
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science 1989, 243, 57–63. [Google Scholar]
- Walsh, J.E.; Chapman, W.L. Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalyses. J. Clim. 1998, 11, 3030–3045. [Google Scholar] [CrossRef]
- Intrieri, J.M.; Fairall, C.W.; Shupe, M.D.; Persson, P.O.G.; Andreas, E.L.; Guest, P.S.; Moritz, R.E. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Kahl, J.D.; Martinez, D.A.; Zaitseva, N.A. Long-term variability in the low-level inversion layer over the Arctic ocean. Int. J. Climatol. 1996, 16, 1297–1313. [Google Scholar] [CrossRef]
- Zhang, Y.; Seidel, D.J.; Golaz, J.C.; Deser, C.; Tomas, R.A. Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Clim. 2011, 24. [Google Scholar] [CrossRef]
- Mauritsen, T.; Sedlar, J.; Tjernström, M.; Leck, C.; Martin, M.; Shupe, M.; Sjogren, S.; Sierau, B.; Persson, P.O.G.; Brooks, I.M.; et al. An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys. 2011, 11. [Google Scholar] [CrossRef] [Green Version]
- Herman, G.; Goody, R. Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci. 1976, 33, 1537–1553. [Google Scholar] [CrossRef]
- Curry, J.A.; Rossow, W.B.; Randall, D.; Schramm, J.L. Overview of Arctic cloud and radiative characteristics. J. Clim. 1996, 9, 1731–1764. [Google Scholar] [CrossRef]
- Intrieri, J.M.; Shupe, M.D.; Uttal, T.; McCarty, B.J. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Kay, J.E.; Gettelman, A. Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Eastman, R.; Warren, S.G. Interannual variations of Arctic cloud types in relation to sea ice. J. Clim. 2010, 23. [Google Scholar] [CrossRef]
- Eastman, R.; Warren, S.G. Arctic cloud changes from surface and satellite observations. J. Clim. 2010, 23. [Google Scholar] [CrossRef]
- Walsh, J.E.; Kattsov, V.M.; Chapman, W.L.; Govorkova, V.; Pavlova, T. Comparison of Arctic climate simulations by uncoupled and coupled global models. J. Clim. 2002, 15, 1429–1446. [Google Scholar] [CrossRef]
- Inoue, J.; Liu, J.; Pinto, J.O.; Curry, J.A. Intercomparison of Arctic regional models: Modeling clouds and radiation for SHEBA in May 1998. J. Clim. 2006, 19. [Google Scholar] [CrossRef]
- Tjernström, M.; Sedlar, J.; Shupe, M.D. How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. J. Appl. Meteorol. Climatol. 2008, 47. [Google Scholar] [CrossRef]
- Birch, C.E.; Brooks, I.M.; Tjernström, M.; Milton, S.F.; Earnshaw, P.; Soderberg, S.; Persson, P.O.G. The performance of a global and mesoscale model over the central Arctic ocean during late summer. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Arking, A. The radiative effects of clouds and their impact on climate. Bull. Am. Meteorol. Soc. 1991, 71, 795–813. [Google Scholar] [CrossRef]
- Cess, R.D.; Zhang, M.H.; Ingram, W.J.; Potter, G.L.; Alekseev, V.; Barker, H.W.; Cohen-Solal, E.; Colman, R.A.; Dazlich, D.A.; Del Genio, A.D.; et al. Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res. 1996, 101. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 629–640. [Google Scholar]
- Curry, J.A.; Pinto, J.O.; McInnes, K.L. Modeling the Summertime Arctic Cloudy Boundary Layer. In Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting; Department of Energy/Atmospheric Radiation Measurement (DOE/ARM), San Diego, CA, USA, 19–23 March 1995; pp. 63–67.
- Morrison, H.; Pinto, J.O. Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Weather Rev. 2006, 134, 1880–1900. [Google Scholar] [CrossRef]
- Sednev, I.; Menon, S.; McFarquhar, G. Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiation mechanisms. Atmos. Chem. Phys. 2009, 9. [Google Scholar] [CrossRef]
- Inoue, J.; Kosovic, B.; Curry, J.A. Evolution of a storm-driven cloudy boundary layer in the Arctic. Bound. Layer Meteorol. 2005, 117. [Google Scholar] [CrossRef]
- Wyser, K.; Jones, C.G.; Du, P.; Girard, E.; Willén, U.; Cassano, J.; Christensen, J.H.; Curry, J.A.; Dethloff, K.; Haugen, J.E.; et al. An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional climate models. Clim. Dyn. 2008, 30. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, K.M.; Morrison, H.; McFarquhar, G. Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations. J. Atmos. Sci. 2008, 65. [Google Scholar] [CrossRef]
- Klein, S.A.; McCoy, R.B.; Morrison, H.; Ackerman, A.S.; Avramov, A.; de Boer, G.; Chen, M.; Cole, J.N.S.; Del Genio, A.D.; Falk, M.; et al. Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase Arctic cloud experiment. I: Single-layer cloud. Q. J. R. Meteorol. Soc. 2009, 135. [Google Scholar] [CrossRef]
- Lubin, D.; Vogelmann, A.M. A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 2006, 439, 453–456. [Google Scholar]
- Garrett, T.J.; Zhao, C. Increased Arctic cloud longwave emmisivity associated with pollution from mid-latitudes. Nature 2006, 440, 787–789. [Google Scholar] [CrossRef]
- Morrison, H.; Pinto, J.O.; Curry, J.A.; McFarquhar, G.M. Sensitivity of modeled Arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Morrison, H.; McCoy, R.B.; Klein, S.A.; Xie, S.; Luo, Y.; Avramov, A.; Chen, M.; Cole, J.N.S.; Falk, M.; Foster, M.J.; et al. Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase Arctic cloud experiment. II: Multilayer cloud. Q. J. R. Meteorol. Soc. 2009, 135. [Google Scholar] [CrossRef]
- Hannay, C.; Bhatt, U.S.; Harrington, J.Y. Single-Column Model Simulations of Arctic Cloudiness and Surface Radiative Fluxes during the Surface Heat Budget of the Arctic (SHEBA) Experiment. In Proceedings of the 6th Conference on Polar Meteorology and Oceanography; American Meteorological Society (AMS), San Diego, CA, USA,, 14–18 May 2001.
- Kay, J.E.; Raeder, K.; Gettelman, A.; Anderson, J. The boundary layer response to recent Arctic sea ice loss and implications for high-latitude climate feedbacks. J. Clim. 2011, 24. [Google Scholar] [CrossRef]
- Pinto, J.O.; Curry, J.A. Atmospheric convective plumes emanating from leads 2. Microphysical and radiative processes. J. Geophys. Res. 1995, 100, 4633–4642. [Google Scholar]
- Curry, J.A.; Hobbs, P.V.; King, M.D.; Randall, D.A.; Minnis, P.; Isaac, G.A.; Pinto, J.O.; Uttal, T.; Bucholtz, A.; Cripe, D.G.; et al. FIRE Arctic clouds experiment. Bull. Am. Meteorol. Soc. 2000, 81, 5–29. [Google Scholar] [CrossRef]
- Rozwadowska, A.; Cahalan, R.F. Plane-parallel biases computed from inhomogeneous Arctic clouds and sea ice. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Sato, K.; Inoue, J.; Kodama, Y.M.; Overland, J.E. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Lohmann, U.; Roeckner, E. Design and performance of a new cloud microphysics parametrization developed for the ECHAM general circulation model. Clim. Dyn. 1996, 12, 557–572. [Google Scholar] [CrossRef]
- Salzmann, M.; Ming, Y.; Golaz, J.C.; Ginoux, P.A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L.J. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: Description, evaluation, and sensitivity tests. Atmos. Chem. Phys. 2010, 10. [Google Scholar] [CrossRef]
- Tompkins, A.M. A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci. 2002, 59, 1917–1942. [Google Scholar] [CrossRef]
- Zhu, P.; Zuidema, P. On the use of PDF schemes to parameterize sub-grid clouds. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Pinto, J.O.; Curry, J.A.; Lynch, A.H.; Persson, P.O.G. Modeling clouds and radiation for the November 1997 period of SHEBA using a column climate model. J. Geophys. Res. 1999, 104. [Google Scholar] [CrossRef]
- Dethloff, K.; Abegg, C.; Rinke, A.; Hebestadt, I.; Romanov, V.F. Sensitivity of Arctic climate simulations to different boundary layer parameterizations in a regional climate model. Tellus A 2001, 53, 1–26. [Google Scholar]
- Zhang, J.; Lohmann, U. Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterizations. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Morrison, H.; Curry, J.A.; Shupe, M.D.; Zuidema, P. A new double-moment microphysics parameterization for application in cloud and climate models. part II: Single-column modeling of Arctic clouds. J. Atmos. Sci. 2005, 62. [Google Scholar] [CrossRef]
- The HIRHAM Regional Climate Model Version 5(β); Technical Report 06-17; Danish Meteorological Institute (DMI): Copenhagen, Denmark, 2007.
- Sundquist, H.; Berge, E.; Kristjánsson, J.E. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Weather Rev. 1989, 117, 1641–1657. [Google Scholar] [CrossRef]
- Undén, P.; Rontu, L.; Järvinen, H.; Lynch, P.; Calvo, J.; Cats, G.; Cuxart, J.; Eerola, K.; Fortelius, C.; Garcia-Moya, J.A.; et al. HIRLAM-5 Scientific Documentation. In HIRLAM-5 Project; Swedish Meteorological and Hydrological Institute (SMHI): Norrköping, Sweden, 2002. [Google Scholar]
- The Atmospheric General Circulation Model ECHAM5–Part I: Model Description; Technical Report 349; Max Planck Institute (MPI) for Meteorology: Hamburg, Germany, 2003.
- The ERA–Interim Archive; ERA report series; European Center for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2009.
- Bergman, J.W.; Sardeshmukh, P.D. Dynamic stabilization of atmospheric single column models. J. Clim. 2004, 17, 1004–1021. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Randall, D.A.; Cripe, D.G. Alternative methods for specification of observed forcing in single-column models and cloud system models. J. Geophys. Res. 1999, 104. [Google Scholar] [CrossRef]
- Lohmann, U.; McFarlane, N.; Levkov, L.; Abdella, K.; Albers, F. Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J. Clim. 1999, 12, 438–461. [Google Scholar] [CrossRef]
- Atmospheric Investigations on the Russian North Pole Drifting Ice Station NP-35. Available online: http://www.awi.de/en/research/research_divisions/climate_science/atmospheric_circulations/expeditions_campaigns/np_35/ (accessed on 9 August 2012).
- The Atmospheric General Circulation Model ECHAM4: Model Description and Simulation of Present-Day Climate; Technical Report 218; Max Planck Institute (MPI) for Meteorology: Hamburg, Germany, 1996.
- Wild, M.; Roeckner, E. Radiative fluxes in the ECHAM5 general circulation model. J. Clim. 2006, 19. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1179–1800. [Google Scholar]
- Nordeng, T.E. Extended Versions of the Convective Parametrization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. In Technical Memorandum; European Center for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 1994. [Google Scholar]
- Wang, S.; Wang, Q.; Jordan, R.E.; Persson, P.O.G. Interactions among longwave radiation of clouds, turbulence, and snow surface temperature in the Arctic: A model sensitivity study. J. Geophys. Res. 2001, 106. [Google Scholar] [CrossRef]
- Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys. 2007, 7, 3425–3446. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- International Satellite Cloud Climatology Project (ISCCP) by NASA Goddard Institute for Space Studies (GISS). Available online: ftp://isccp.giss.nasa.gov/pub/data/D2Tars/ (accessed on 25 August 2011).
- MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document. Available online: http://modis-atmos.gsfc.nasa.gov/_docs/MOD08MYD08%20ATBD%20C005.pdf (accessed on 9 August 2012).
- Moderate Resolution Imaging Spectroradiometer (MODIS) by National Aeronautics and Space Administration (NASA). Available online: ftp://ladsweb.nascom.nasa.gov/allData/5/MOD08_M3/ (accessed on 14 October 2011).
- Schweiger, A.J.; Lindsay, R.W.; Key, J.R.; Francis, J.A. Arctic clouds in multilayer satellite data sets. Geophys. Res. Lett. 1999, 26, 1845–1848. [Google Scholar] [CrossRef]
- Hahn, C.J.; Warren, S.G.; London, J. The effect of moonlight on observations of cloud cover at night, and application to cloud climatology. J. Clim. 1995, 8, 1429–1466. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Parker, L. On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res. 1992, 97. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Z. Comparison of Arctic clouds between European Center for Medium-Range Weather Forecasts simulations and Atmospheric Radiation Measurement Climate Research Facility long-term observations at the North Slope of Alaska Barrow Site. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Axelsson, P.; Tjernström, M.; Söderberg, S.; Svensson, G. An ensemble of Arctic simulations of the AOE-2001 field experiment. Atmosphere 2011, 2. [Google Scholar] [CrossRef]
- Weber, T.; Quaas, J.; Räisänen, P. Evaluation of the statistical cloud scheme in the ECHAM5 model using satellite data. Q. J. R. Meteorol. Soc. 2011, 137. [Google Scholar] [CrossRef]
- Liu, Y.; Ackerman, S.A.; Maddux, B.C.; Key, J.R.; Frey, R.A. Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. J. Clim. 2010, 23. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Klaus, D.; Dorn, W.; Dethloff, K.; Rinke, A.; Mielke, M. Evaluation of Two Cloud Parameterizations and Their Possible Adaptation to Arctic Climate Conditions. Atmosphere 2012, 3, 419-450. https://doi.org/10.3390/atmos3030419
Klaus D, Dorn W, Dethloff K, Rinke A, Mielke M. Evaluation of Two Cloud Parameterizations and Their Possible Adaptation to Arctic Climate Conditions. Atmosphere. 2012; 3(3):419-450. https://doi.org/10.3390/atmos3030419
Chicago/Turabian StyleKlaus, Daniel, Wolfgang Dorn, Klaus Dethloff, Annette Rinke, and Moritz Mielke. 2012. "Evaluation of Two Cloud Parameterizations and Their Possible Adaptation to Arctic Climate Conditions" Atmosphere 3, no. 3: 419-450. https://doi.org/10.3390/atmos3030419
APA StyleKlaus, D., Dorn, W., Dethloff, K., Rinke, A., & Mielke, M. (2012). Evaluation of Two Cloud Parameterizations and Their Possible Adaptation to Arctic Climate Conditions. Atmosphere, 3(3), 419-450. https://doi.org/10.3390/atmos3030419