Anthropogenic Climate Change and Allergic Diseases
Abstract
:1. Introduction
2. Impacts of Climate Change on Allergenic Plants
2.1. Allergenic Plants
Common Name | Latin Name | Variables Temp. (day max/night min) °C; CO2 parts per million (ppm) | Location/Method | Observed Effect | References |
---|---|---|---|---|---|
Peanut and grain sorghum | Arachis hypogaea; Sorghum bicolor | Temp.: 32/22, 36/26, 40/30, and 44/34 °C; CO2:350 and 700 ppm | Controlled laboratory facility in Gainesville, FL, USA; SPAR chamber with natural sunlight | Elevated temperature decreased germination in both species and elevated CO2 did not alter pollen longevity | [14] |
Cowpea | Vigna unguiculata | Temp.: 30/22 and 38/30 °C; CO2: 360 and 720 ppm | Controlled laboratory facility in Mississippi, USA; SPAR chamber with natural sunlight | Elevated CO2 did not protect pollen from damage by elevated UV/temperature | [15] |
Loblolly Pine | Pinus taeda L. | Temp.: ambient summer, not controlled; CO2: ambient and ambient plus 200 ppm | Outdoor plantation plots in North Carolina, USA with vertical CO2 delivery pipes on plot | Elevated CO2 resulted in increased pollen production and pollen production at younger ages and smaller tree sizes | [17] |
Grain-sorghum | Sorghum bicolor (L.) Moench | Temp.: 32/22, 36/26, 40/30 or 44/34 °C; CO2: 350 and 700 ppm | Controlled laboratory facility in Gainesville, FL, USA; SPAR chamber with natural sunlight | Temperature effects on reproductive processes is more severe at elevated CO2 concentrations | [16] |
Soybean | Glycine max L. | Temp.: 30/22 and 38/30 °C; CO2: 360 and 720 ppm | Controlled laboratory facility in Mississippi, USA; SPAR chamber with natural sunlight | Elevated CO2 did not protect against damaging effects of increased UV-B | [18] |
Ragweed | Ambrosia artemisiifolia | Temp.: constant; CO2: 280, 370, and 600 ppm | Controlled laboratory facility in Maryland, USA; Chambers with artificial lights programmed for specific photon flux | Allergen content increases with elevated CO2 | [19] |
Ragweed | Ambrosia artemisiifolia | Temp.: constant 26/21 °C; CO2:~380 (ambient) and 700 ppm | Glasshouse with controls for CO2, temperature, and lighting (6 hours per day supplemental light) | Elevated CO2 increased pollen production, biomass, and flowered earlier | [20] |
Ragweed | Ambrosia artemisiifolia | Ambient observations with increased temp and CO2 | A transect that ran from Texas to Canada/ambient observations | Increased duration of ragweed pollen season | [21] |
Ragweed | Ambrosia artemisiifolia | Temp.: ambient; CO2: ambient | Central Croatia/ambient measurements of pollen levels | Increased duration of pollen season | [22] |
Fireweed; also called Willowherb | Epilobium angustifolium | Temp.: ambient; CO2: 350 and 650 ppm | Polyethylene chamber within greenhouse with ambient sunlight and temperature. Also varied nutrient loading in soil and sunlight was supplemented by artificial lighting. Greenhouse located in France or Switzerland | No effect on pollen tube growth but significant effect on pollen germination probability. Some families increased and others decreased | [23] |
Garden Nasturtium; also called Indian Cress or Monks Cress | Tropaeolum majus | Temp.: constant, 22/16 °C; CO2: ~380 and 760 ppm | Growth cabinets with artificial lighting located in Australia | Elevated CO2 increased nectar secretion rate but did not affect time to flowering, total number of flowers produced, pollen to ovule ratio | [24] |
rice (cv IR72) | Oryza sativa | Temp.: ambient and ambient plus 4 °C; CO2: Ambient and ambient plus 300 ppm | Open-top chambers Los Banos, Philippines | Increased temperature and CO2 resulted in sterility among pollen grains (less germination) | [13] |
field bean | Vicia faba L. | Temp.: 18 °C; CO2: 350 and 700 ppm | Climate and CO2 controlled rooms with artificial light | Increased CO2 increased number of flowers by 25%, and these flowers remained for 17% longer time compared to controls | [25] |
2.2. Pollen and Aeroallergens
2.3. Mold Spores
3. Allergic Effects on Human Populations
4. Conclusions
Acknowledgments
References
- Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: Synthesis Report; IPCC: Cambridge, UK and New York, NY, USA, 2007.
- Tans, P.; Keeling, R. Trends in atmospheric carbon dioxide. Available online: http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html#mlo_full (accessed on7 January 2012).
- Beard, C.; Pye, G.; Steurer, F.; Rodriguez, R.; Campman, R.; Peterson, T.; Ramsey, J.; Wirtz, R.; Robinson, L. Chagas disease in a domestic transmission cycle, Southern Texas, US. Emerg. Infect. Dis. 2003, 9, 103–105. [Google Scholar] [CrossRef]
- Demain, J.G.; Gessner, B.D.; McLaughlin, J.B.; Sikes, D.S.; Foote, J.T. Increasing insect reactions in Alaska: Is this related to changing climate? Allergy Asthma Proc. 2009, 30, 238–243. [Google Scholar] [CrossRef]
- Beggs, P.J.; Bambrick, H.J. Is the global rise of asthma an early impact of anthropogenic climate change? Environ. Health Perspect. 2005, 113, 915–919. [Google Scholar] [CrossRef]
- Ziska, L.H.; Beggs, P.J. Anthropogenic climate change and allergen exposure: The role of plant biology. J. Allergy Clin. Immunol. 2012, 129, 27–32. [Google Scholar] [CrossRef]
- Beggs, P. Climate change and plant food allergens. J. Allergy Clin. Immunol. 2009, 123, 271–272. [Google Scholar] [CrossRef]
- Beggs, P.; Walczyk, N. Impacts of climate change on plant food allergens: A previously unrecognised threat to human health. Air Qual. Atmos. Health 2008, 1, 119–123. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK and New York, NY, USA, 2007.
- American Academy of Allergy, Asthma and Immunology (AAAAI). Allergy Statistics (1996–2006). 2008. Available online: http://www.aaaai.org/about-the-aaaai/newsroom/allergy-statistics.aspx#Allergy_Statistics (accessed on 23 Feburary 2012).
- Gamble, J.L.; Reid, C.E.; Post, E.; Sacks, J. Review of the Impacts of Climate Variability and Change on Aeroallergens and Their Associated Effects; US Environmental Protection Agency: Washington, DC, USA, 2008; p. 91, EPA/600/R-06/164F. [Google Scholar]
- Wand, J.K.; Midgley, G.F.; Jones, M.H.; Curtis, P.S. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions. Glob. Change Biol. 1999, 5, 723–741. [Google Scholar] [CrossRef]
- Matsui, T.; Namuco, O.; Ziska, L.; Horie, T. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res. 1997, 51, 213–219. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H. Longevity and temperature response of pollen as affected by elevated growth temperature and carbon dioxide in peanut and grain sorghum. Environ. Exp. Bot. 2011, 70, 51–57. [Google Scholar] [CrossRef]
- Singh, S.K.; Kakani, V.G.; Surabhi, G.K.; Reddy, K.R. Cowpea (Vigna unguiculata [L.] Walp.) genotypes response to multiple abiotic stresses. J. Photochem. Photobiol. B 2010, 100, 135–146. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric. For. Meteorol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Ladeau, S.L.; Clark, J.S. Pollen production by Pinus taeda growing in elevated atmospheric CO2. Funct. Ecol. 2006, 20, 541–547. [Google Scholar] [CrossRef]
- Koti, S.; Reddy, K.R.; Reddy, V.R.; Kakani, V.G.; Zhao, D. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J. Exp. Bot. 2005, 56, 725–736. [Google Scholar] [CrossRef]
- Singer, B.; Ziska, L.; Frenz, D.; Gebhard, D.; Straka, J. Increaseing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct. Plant Biol. 2005, 32, 667–670. [Google Scholar] [CrossRef]
- Rogers, C.A.; Wayne, P.M.; Macklin, E.A.; Muilenberg, M.L.; Wagner, C.J.; Epstein, P.R.; Bazzaz, F.A. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ. Health Perspect. 2006, 114, 865–869. [Google Scholar]
- Ziska, L.; Knowlton, K.; Rogers, C.; Dalan, D.; Tierney, N.; Elder, M.A.; Filley, W.; Shropshire, J.; Ford, L.B.; Hedberg, C.; et al. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc. Natl. Acad. Sci. USA 2011, 108, 4248–4251. [Google Scholar]
- Peternel, R.; Culig, J.; Srnec, L.; Mitić, B.; Vukusić, I.; Hrga, I. Variation in ragweed (Ambrosia artemisiifolia L.) pollen concentration in central Croatia, 2002–2003. Ann. Agric. Environ. Med. 2005, 12, 11–16. [Google Scholar]
- Lavigne, C.; Mignot, A.; Stocklin, J. Genetic variation in the response of pollen germination to nutrient availability and elevated atmospheric CO2 concentrations in Epilobium angustifolium. Int. J. Plant Sci. 1999, 160, 109–115. [Google Scholar] [CrossRef]
- Lake, J.; Hughes, L. Nectar production and floral characteristics of Tropaeolum majus L. grown in ambient and elevated carbon dioxide. Ann. Bot. 1999, 84, 535–541. [Google Scholar] [CrossRef]
- Osborne, J.; Awmack, C.; Clark, S.; Williams, I.; Mills, V. Nectar and flower production in Vicia faba L. (field bean) at ambient and elevated carbon dioxide. Apidologie 1997, 28, 43–55. [Google Scholar] [CrossRef]
- Ziska, L.H.; Caulfield, F. Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: Implications for public health. Aust. J. Plant Physiol. 2000, 27, 893–898. [Google Scholar]
- Wayne, P.M.; Foster, S.; Connolly, J.; Bazzaz, F.; Epstein, P.R. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann. Allergy Asthma Immunol. 2002, 88, 279–282. [Google Scholar] [CrossRef]
- Beggs, P.J. Impacts of climate change on aeroallergens: Past and future. Clin. Exp. Allergy 2004, 34, 1507–1513. [Google Scholar] [CrossRef]
- Hjelmroos, M.; Schumacher, M.; van Hage-Hamsten, M. Heterogeneity of pollen proteins within individual Betula pendula trees. Int. Arch. Allergy Immunol. 1995, 108, 368–376. [Google Scholar] [CrossRef]
- Ahlholm, J.U.; Helander, M.; Savolainen, J. Genetic and environmental factors affecting the allergenicity of birch (Betula pubescens ssp. czerepanovii [Orl.] Hamet-Ahti) pollen. Clin. Exp. Allergy 1998, 28, 1384–1388. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar]
- Bielory, L.; Diaz, C. Aeroallergen prevalence in New Jersey. New Jersey Med.: J. Med. Soc. New Jersey 1988, 85, 503–505. [Google Scholar]
- Clot, B. Trends in airborne pollen: An overview of 21 years of data in Neuchatel (Switzerland). Aerobiologica 2003, 19, 227–234. [Google Scholar] [CrossRef]
- Minckley, T.; Whitlock, C. Spatial variation of modern pollen in Oregon and southern Washington, USA. Rev. Palaeobot. Palynol. 2000, 112, 97–123. [Google Scholar] [CrossRef]
- Efstathiou, C.I.; Isukapalli, S.S.; Bielory, L.J.; Georgopoulos, P.G. A novel modeling system for estimating pollen emissions: Application to North East US. J. Allergy Clin. Immunol. 2009, 123, S231. [Google Scholar]
- Witkowska, R.; Benincasa, P.; Bielory, L. Grass pollen trends in New York metropolitan area. J. Allergy Clin. Immunol. 2003, 111, S92. [Google Scholar]
- Milks, C.; Weiss, M.; Zhao, C.; Diaz, C.; Bielory, L. Emergency Room Asthma Visits (EDVA) lag behind pollen counts. J. Allergy Clin. Immunol. 1999, 464, S121. [Google Scholar]
- Corden, J.; Millington, W. The long-term tredns and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia 2001, 17, 127–136. [Google Scholar] [CrossRef]
- Pulimood, T.B.; Corden, J.M.; Bryden, C.; Sharples, L.; Nasser, S.M. Epidemic asthma and the role of the fungal mold Alternaria alternata. J. Allergy Clin. Immunol. 2007, 120, 610–617. [Google Scholar] [CrossRef]
- Katial, R.K.; Zhang, Y.; Jones, R.H.; Dyer, P.D. Atmospheric mold spore counts in relation to meteorological parameters. Int. J. Biometeorol. 1997, 41, 17–22. [Google Scholar] [CrossRef]
- Troutt, C.; Levetin, E. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. Int. J. Biometeorol. 2001, 45, 64–74. [Google Scholar] [CrossRef]
- Freye, H.B.; King, J.; Litwin, C.M. Variations of pollen and mold concentrations in 1998 during the strong El Niño event of 1997-1998 and their impact on clinical exacerbations of allergic rhinitis, asthma, and sinusiti. Allergy Asthma Proc. 2001, 22, 239–247. [Google Scholar]
- Gimeno, P.M.; Brito, F.F.; Martínez, C.; Tobías, A.; Suárez, L.; Guerra, F.; Galindow, P.A.; Gómez, E. Decompensation of pollen-induced asthma in two towns with different pollution levels in La Mancha, Spain. Clin. Exp. Allergy 2007, 37, 558–563. [Google Scholar] [CrossRef]
- Gilmour, M.I.; Jaakkola, M.S.; London, S.J.; Nel, A.E.; Rogers, C.A. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthm. Environ. Health Perspect. 2006, 114, 627–633. [Google Scholar]
- Riedl, M.A. The effect of air pollution on asthma and allergy. Curr. Allergy Asthma Rep. 2008, 8, 139–146. [Google Scholar] [CrossRef]
- Devalia, J.L.; Rusznak, C.; Davies, R.J. Allergen/irritant interaction—Its role in sensitization and allergic disease. Allergy 1998, 53, 335–345. [Google Scholar] [CrossRef]
- Epstein, P.R. Climate change and human health. N. Engl. J. Med. 2005, 353, 1433–1436. [Google Scholar] [CrossRef]
- Bartra, J.; Mullol, J.; del Cuvillo, A.; Davila, I.; Ferrer, M.; Jauregui, I.; Montoro, J.; Sastre, J.; Valero, A. Air pollution and allergens. J. Investig. Allergol. Clin. Immunol. 2007, 17, S3–S8. [Google Scholar]
- Hales, S.; Lewis, S.; Slater, T.; Crane, J.; Pearce, N. Prevalence of adult asthma symptoms in relation to climate in New Zealand. Environ. Health Perspect. 1998, 106, 607–610. [Google Scholar] [CrossRef]
- de Marco, R.; Poli, A.; Ferrari, M.; Accordini, S.; Giammanco, G.; Bugiani, M.; Villani, S.; Ponzio, M.; Bono, R.; Carrozzi, L.; et al. The impact of climate and traffic-related NO2 on the prevalence of asthma and allergic rhinitis in Italy. Clin. Exp. Allergy 2002, 32, 1405–1412. [Google Scholar] [CrossRef]
- Zanolin, M.E.; Pattaro, C.; Corsico, A.; Bugiani, M.; Carrozzi, L.; Casali, L.; Dallari, R.; Ferrari, M.; Marinoni, A.; Migliore, E.; et al. The role of climate on the geographic variability of asthma, allergic rhinitis and respiratory symptoms: results from the Italian study of asthma in young adults. Allergy 2004, 59, 306–314. [Google Scholar] [CrossRef]
- Karjalainen, J.; Lindqvist, A.; Laitinen, L.A. Seasonal variability of exercise-induced asthma especially outdoors. Effect of birch pollen allergy. Clin. Exp. Allergy 1989, 19, 273–278. [Google Scholar] [CrossRef]
- Williams, R. Climate change blamed for rise in hay fever. Nature 2005, 434, 1059. [Google Scholar] [CrossRef]
- Arbes, S.J., Jr.; Gergen, P.J.; Elliott, L.; Zeldin, D.C. Prevalences of positive skin test responses to 10 common allergens in the US population: Results from the third national health and nutrition examination survey. J. Allergy Clin. Immunol. 2005, 116, 377–383. [Google Scholar] [CrossRef]
- Lee, Y.L.; Shaw, C.K.; Su, H.J.; Lai, J.S.; Ko, Y.C.; Huang, S.L.; Sung, F.C.; Guo, Y.L. Climate, traffic-related air pollutants and allergic rhinitis prevalence in middle-school children in Taiwan. Eur. Respir. J. 2003, 21, 964–970. [Google Scholar] [CrossRef]
- Breton, M.C.; Garneau, M.; Fortier, I.; Guay, F.; Louis, J. Relationship between climate, pollen concentrations of Ambrosia and medical consultations for allergic rhinitis in Montreal, 1994–200. Sci. Total Environ. 2006, 370, 39–50. [Google Scholar] [CrossRef]
- Hanigan, I.C.; Johnston, F.H. Respiratory hospital admissions were associated with ambient airborne pollen in Darwin, Australia, 2004–2005. Clin. Exp.Allergy 2007, 37, 1556–1565. [Google Scholar]
- Dales, R.E.; Cakmak, S.; Judek, S.; Coates, F. Tree pollen and hospitalization for asthma in Urban Canada. Int. Arch. Allergy Immunol. 2008, 146, 241–247. [Google Scholar] [CrossRef]
- Lm, W.; Schneider, D. Effect of weed pollen on children’s hospital admissions for asthma during the fall season. Arch. Environ. Occup. Health 2005, 60, 257–265. [Google Scholar] [CrossRef]
- Tobías, A.; Galán, I.; Banegas, J.; Aránguez, E. Short term effects of airborne pollen concentrations on asthma epidemic. Thorax 2003, 58, 708–710. [Google Scholar] [CrossRef]
- Kimes, D.; Nelson, R.; Levine, E.; Weiss, S.; Bollinger, M.E.; Blaisdell, C. Predicting paediatric asthma hospital admissions and ED visits. Neural Comput. Appl. 2003, 12, 10–17. [Google Scholar] [CrossRef]
- New Jersey Department of Health and Senior Services (NJDHSS), Asthma in NJ Update 2006; NJDHSS: Trenton, NJ, USA, 2006.
- Nastos, P.; Paliastos, A.; Anthracopoulos, M.; Roma, E.; Priftis, K. Outdoor particulate matter and childhood asthma admissions in Athens, Greece: A time-series study. Environ. Health 2010, 9, 45. [Google Scholar] [CrossRef]
- Green, R.; Custovic, A.; Sanderson, G.; Hunter, J.; Johnston, S.L.; Woodcock, A. Synergism between allergens and viruses and risk of hospital admission with asthma: Case-control study. BMJ 2002, 324. [Google Scholar] [CrossRef]
- Beggs, P.J. Adaptation to impacts of climate change on aeroallergens and allergic respiratory diseases. Int. J. Environ. Res. Public Health 2010, 7, 3006–3021. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Blando, J.; Bielory, L.; Nguyen-Feng, V.N.; Diaz, R.; Jeng, H.A. Anthropogenic Climate Change and Allergic Diseases. Atmosphere 2012, 3, 200-212. https://doi.org/10.3390/atmos3010200
Blando J, Bielory L, Nguyen-Feng VN, Diaz R, Jeng HA. Anthropogenic Climate Change and Allergic Diseases. Atmosphere. 2012; 3(1):200-212. https://doi.org/10.3390/atmos3010200
Chicago/Turabian StyleBlando, James, Leonard Bielory, Viann N. Nguyen-Feng, Rafael Diaz, and Hueiwang Anna Jeng. 2012. "Anthropogenic Climate Change and Allergic Diseases" Atmosphere 3, no. 1: 200-212. https://doi.org/10.3390/atmos3010200
APA StyleBlando, J., Bielory, L., Nguyen-Feng, V. N., Diaz, R., & Jeng, H. A. (2012). Anthropogenic Climate Change and Allergic Diseases. Atmosphere, 3(1), 200-212. https://doi.org/10.3390/atmos3010200