Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station
Abstract
1. Introduction
2. Observation Site and Instrumentation
2.1. Study Area
2.2. AEF Instrument
3. Method
- (1)
- wind speed < 8 m/s;
- (2)
- relative humidity ≤ 80%;
- (3)
- visibility ≥ 15 km;
- (4)
- no precipitation;
- (5)
- AEF value between 0 and 1 kV/m;
- (6)
- geomagnetic activity index Kp < 3.
4. Results and Discussion
4.1. Interannual Variation of AEF
4.2. Diurnal Variation in AEF
5. Conclusions
- (1)
- The annual mean FW AEF at Gar is approximately 0.331 kV/m, substantially higher than values reported at lowland or plain sites, reflecting the pronounced enhancement associated with high-altitude environments. A clear seasonal cycle is evident, with monthly mean AEF values peaking in December (0.411–0.559 kV/m) and reaching a minimum during July–August (0.150–0.242 kV/m). This seasonal variability is likely governed by a combination of meteorological conditions and aerosol concentrations, both of which modulate atmospheric conductivity and, consequently, influence the strength of the near-surface electric field.
- (2)
- The diurnal variation in AEF is also examined. A distinctive feature of the Gar curve is the presence of a double-peak diurnal pattern (approximately around 11:00 LT and 22:00 LT), primarily influenced by sunrise and sunset effects, as well as by the diurnal evolution of aerosol concentrations. The phase of the diurnal curve exhibits slight seasonal shifts: the earlier the sunrise, the earlier the onset of radiative ionization, which, in turn, leads to an earlier occurrence of the morning AEF peak;
- (3)
- Comparisons between land-based stations (Gar, YBJ, Islamabad, Kolkata, and Ramon) and the classical Carnegie curve reveal substantial and systematic deviations. All land-based sites exhibit distinct diurnal patterns and amplitudes that diverge markedly from the ocean-based Carnegie reference, which characterizes global fair-weather electric field behavior under minimal local influence. Notably, the AEF curve at Gar shows a significantly larger diurnal amplitude and a well-defined double-peak structure compared to YBJ, while other stations present unique features, such as pronounced morning peaks or irregular profiles. These disparities underscore the critical role of regional and local terrestrial factors, including meteorological conditions, aerosol loading, and geographical setting, in modulating the surface electric field and shaping the regional expressions of the GEC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rycroft, M.J.; Harrison, R.G.; Nicoll, K.A.; Mareev, E.A. An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci. Rev. 2008, 137, 83–105. [Google Scholar] [CrossRef]
- Harrison, R.G. The carnegie curve. Surv. Geophys. 2013, 34, 209–232. [Google Scholar] [CrossRef]
- Gurmani, S.F.; Ahmad, N.; Shamsher, T.; Mehmood, T.; Khalid, W.; Maqsood, A.; Iqbal, T.; Shah, M.A. Diurnal variation in the atmospheric electric field with respect to aerosol and meteorological parameters at Islamabad, Pakistan. J. Earth Syst. Sci. 2023, 132, 134. [Google Scholar] [CrossRef]
- Krasheninnikov, A.; Loktev, D.; Soloviev, S. Megacity aerosol pollution and atmospheric electric field disturbances. Izv. Atmos. Ocean. Phys. 2020, 56, 759–772. [Google Scholar] [CrossRef]
- Ahmad, N.; Gurmani, S.F.; Basit, A.; Shah, M.A.; Iqbal, T. Impact of local and global factors and meteorological parameters in temporal variation of atmospheric potential gradient. Adv. Space Res. 2021, 67, 2491–2503. [Google Scholar] [CrossRef]
- Markson, R. Solar modulation of atmospheric electrification and possible implications for the Sun–weather relationship. Nature 1978, 273, 103–109. [Google Scholar] [CrossRef]
- Kobylinski, Z.; Michnowski, S. Atmospheric electric and electromagnetic field rapid changes as possible precursors of earthquakes and volcano eruption: A brief review. Sun Geosph. 2007, 2, 43–47. [Google Scholar]
- Williams, E.; Mareev, E. Recent progress on the global electrical circuit. Atmos. Res. 2014, 135, 208–227. [Google Scholar] [CrossRef]
- Marcz, F. Short-term changes in atmospheric electricity associated with Forbush decreases. J. Atmos. Sol.-Terr. Phys. 1997, 59, 975–982. [Google Scholar] [CrossRef]
- Tacza, J.; Raulin, J.P.; Mendonca, R.; Makhmutov, V.; Marun, A.; Fernandez, G. Solar effects on the atmospheric electric field during 2010–2015 at low latitudes. J. Geophys. Res. Atmos. 2018, 123, 11970–11979. [Google Scholar] [CrossRef]
- Li, W.; Sun, Z.; Chen, T.; Yan, Z.; Luo, J.; Xu, Q.; Ma, Z. Different Effects of a Super Storm on Atmospheric Electric Fields at Different Latitudes. Atmosphere 2024, 15, 1314. [Google Scholar] [CrossRef]
- Tacza, J.; Odzimek, A.; Tueros Cuadros, E.; Raulin, J.P.; Kubicki, M.; Fernandez, G.; Marun, A. Investigating effects of solar proton events and Forbush decreases on ground-level potential gradient recorded at middle and low latitudes and different altitudes. Space Weather 2022, 20, e2021SW002944. [Google Scholar] [CrossRef]
- Tacza, J.; Li, G.; Raulin, J.P. Effects of Forbush Decreases on the global electric circuit. Space Weather 2024, 22, e2023SW003852. [Google Scholar] [CrossRef]
- Qiu, S.; Xie, Y.; Shi, M.; Yousof, H.; Soon, W.; Ren, Z.; Jia, M.; Dou, X. Observations and Analysis of the Mid-Latitude Atmospheric Electric Field During Geomagnetic Activity. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030785. [Google Scholar] [CrossRef]
- Gurmani, S.F.; Ahmad, N.; Kalsoom, R.; Shahzada, S.; Awais, M.; Shah, M.A. Temporal variation of atmospheric electric field in comparison with solar terrestrial activities during the 24th solar cycle. Astron. Comput. 2024, 49, 100882. [Google Scholar] [CrossRef]
- Pulinets, S.; Khachikyan, G. The Global electric circuit and global seismicity. Geosciences 2021, 11, 491. [Google Scholar] [CrossRef]
- Li, L.; Chen, T.; Song, J.; Ti, S.; Wang, S.; Cai, C.; Li, W.; Luo, J. Comparison of the Atmospheric Electric Field from Three Global Stations in 2021. Universe 2023, 9, 112. [Google Scholar] [CrossRef]
- Li, G.; Fu, S.; Guo, X.C.; Tacza, J.; Chen, T.; Yue, J.W. Magnetopause Location and Solar Wind Turbulence Level During FDs and Their Impacts on the Global Electric Circuit. Space Weather 2025, 23, e2025SW004453. [Google Scholar] [CrossRef]
- Sheftel, V.; Bandilet, O.; Yaroshenko, A.; Chernyshev, A. Space-time structure and reasons of global, regional, and local variations of atmospheric electricity. J. Geophys. Res. Atmos. 1994, 99, 10797–10806. [Google Scholar]
- Harrison, R.G. Behind the curve: A comparison of historical sources for the Carnegie curve of the global atmospheric electric circuit. Hist. Geo- Space Sci. 2020, 11, 207–213. [Google Scholar] [CrossRef]
- Siingh, D.; Singh, R.; Gopalakrishnan, V.; Selvaraj, C.; Panneerselvam, C. Fair-weather atmospheric electricity study at Maitri (Antarctica). Earth Planets Space 2013, 65, 1541–1553. [Google Scholar] [CrossRef]
- Yaniv, R.; Yair, Y.; Price, C.; Mkrtchyan, H.; Lynn, B.; Reymers, A. Ground-based measurements of the vertical E-field in mountainous regions and the “Austausch” effect. Atmos. Res. 2017, 189, 127–133. [Google Scholar] [CrossRef]
- Nicoll, K.A.; Harrison, R.G.; Barta, V.; Bor, J.; Brugge, R.; Chillingarian, A.; Chum, J.; Georgoulias, A.; Guha, A.; Kourtidis, K.; et al. A global atmospheric electricity monitoring network for climate and geophysical research. J. Atmos. Sol.-Terr. Phys. 2019, 184, 18–29. [Google Scholar] [CrossRef]
- Afreen, S.; Victor, N.J.; Nazir, S.; Siingh, D.; Bashir, G.; Ahmad, N.; Javid Ahmad, S.; Singh, R. Fair-weather atmospheric electric field measurements at Gulmarg, India. J. Earth Syst. Sci. 2022, 131, 7. [Google Scholar] [CrossRef]
- Xu, B.; Huang, C.; Chen, B. Observation of the variations of the atmospheric electric field at YBJ, Tibet. Meteorol. Atmos. Phys. 2013, 121, 99–107. [Google Scholar] [CrossRef]
- Mkrtchyan, H.; Karapetyan, G.; Aslanyan, D. Atmospheric electric field variations during fair weather and thunderstorms at different altitudes. J. Atmos. Sol.-Terr. Phys. 2020, 211, 105452. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Chatterjee, A.; Das, S.K.; Singh, S.; Ghosh, S.K. Study of fair weather surface atmospheric electric field at high altitude station in Eastern Himalayas. Atmos. Res. 2020, 239, 104909. [Google Scholar] [CrossRef]
- Li, L.; Chen, T.; Ti, S.; Wang, S.; Cai, C.; Li, W.; Luo, J. Surface atmospheric electric field variability on the Qinghai-Tibet Plateau. Meteorol. Atmos. Phys. 2023, 135, 17. [Google Scholar] [CrossRef]
- Gurmani, S.; Ahmad, N.; Tacza, J.; Hussain, T.; Shafaq, S.; Iqbal, T. Comparative analysis of local and global atmospheric electric field at the Northern Pakistan. J. Atmos. Sol.-Terr. Phys. 2020, 206, 105326. [Google Scholar] [CrossRef]
- Harrison, R.; Nicoll, K. Fair weather criteria for atmospheric electricity measurements. J. Atmos. Sol.-Terr. Phys. 2018, 179, 239–250. [Google Scholar] [CrossRef]
- Li, R.; Ti, S.; Li, L.; Song, J.; Chen, T. Diurnal variations of atmospheric electric fields on fair weather days and its correlations with aerosols, wind speed, irradiance, and relative humidity. Sci. Rep. 2025, 15, 7030. [Google Scholar] [CrossRef]
- Bennett, A.; Harrison, R. Atmospheric electricity in different weather conditions. Weather 2007, 62, 277–283. [Google Scholar] [CrossRef]
- Kubicki, M.; Odzimek, A.; Neska, M. Relationship of ground-level aerosol concentration and atmospheric electric field at three observation sites in the Arctic, Antarctic and Europe. Atmos. Res. 2016, 178, 329–346. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Loktev, D.N.; Soloviev, S.P. Atmospheric electric field in megacity aerosol pollution conditions. In Proceedings of the 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russian, 2–5 July 2018; SPIE: Tomsk, Russian, 2018; Volume 10833, pp. 1485–1493. [Google Scholar]
- Menvielle, M.; Berthelier, A. The K-derived planetary indices: Description and availability. Rev. Geophys. 1991, 29, 415–432. [Google Scholar] [CrossRef]
- Gonzalez, W.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Harrison, R.G. The global atmospheric electrical circuit and climate. Surv. Geophys. 2004, 25, 441–484. [Google Scholar] [CrossRef]
- Chilingarian, A. Variations of the Near-Surface Electric field measured at Aragats during Geomagnetic Storms. arXiv 2025, arXiv:2505.16271. [Google Scholar] [CrossRef]
- Kamogawa, M.; Suzuki, T.; Minamoto, Y.; Nagao, T.; Kodama, T.; Fujiwara, H.; Kudo, T. Continued atmospheric electric field measurements following cessation of the long-term water dropper potential equalizer at Kakioka, Japan. Geosci. Data J. 2024, 11, 342–350. [Google Scholar] [CrossRef]
- Wang, C. New Chains of Space Weather Monitoring Stations in China. Space Weather 2010, 8, 08001. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Lü, D.; Yue, X.; Xue, X.; Chen, G.; Yan, J.; Yan, Y.; Lan, A.; Wang, J.; et al. Construction progress of Chinese meridian project phase II. Chin. J. Space Sci. 2022, 42, 539–545. [Google Scholar] [CrossRef]
- Li, L.; Chen, T.; Wang, S.; Ti, S.; Cai, C.; Li, W.; Luo, J. Chinese Meridian Project near-surface atmospheric electric field observations. Rev. Geophys. Planet. Phys. 2024, 55, 138–143. [Google Scholar]
- Reiter, R. Further evidence for impact of solar flares on potential gradient and air-earth current characteristics at high mountain stations. Pure Appl. Geophys. 1971, 86, 142–158. [Google Scholar] [CrossRef]
- Wang, C.; Song, G.; Wang, Y.; Zhao, K. Characteristics of Temporal and Spatial Distribution of Atmospheric PM10 and PM2.5 in Tibet Region. Acta Sci. Nat. Univ. Pekin. 2025, 61, 195–205. [Google Scholar]
- Wu, G.; Liu, Y.; Zhang, Q.; Duan, A.; Wang, T.; Wan, R.; Liu, X.; Li, W.; Wang, Z.; Liang, X. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeorol. 2007, 8, 770–789. [Google Scholar] [CrossRef]
- Sofiev, M.; Sofieva, V.; Elperin, T.; Kleeorin, N.; Rogachevskii, I.; Zilitinkevich, S. Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified atmospheric flows. J. Geophys. Res. Atmos. 2009, 114, D18209. [Google Scholar] [CrossRef]
- Li, H.; Liu, B.; Ma, X.; Ma, Y.; Jin, S.; Fan, R.; Wang, W.; Fang, J.; Zhao, Y.; Gong, W. The influence of temperature inversion on the vertical distribution of aerosols. Remote Sens. 2022, 14, 4428. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, L.; Hu, F.; Fan, G.; Huo, J. Nocturnal boundary layer evolution and its impacts on the vertical distributions of pollutant particulate matter. Atmosphere 2021, 12, 610. [Google Scholar] [CrossRef]
- Li, L.; Chen, T.; Ti, S.; Wang, S.H.; Song, J.J.; Cai, C.L.; Liu, Y.H.; Li, W.; Luo, J. Fair-weather near-surface atmospheric electric field measurements at the Zhongshan Chinese Station in Antarctica. Appl. Sci. 2022, 12, 9248. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, T.; Li, W.; Liu, G.; Li, R. Analysis of the spatial and temporal variation characteristics of the atmospheric electric field on fair-weather. Chin. J. Space Sci. 2022, 42, 403–413. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, M.; Li, Z. Adaptive Filtering De-noising Method Based on Generalized S-Transform and Gaussian Smoothing. In Proceedings of the International Geophysical Conference, Beijing, China, 24–27 April 2018; pp. 337–340. [Google Scholar]
- Wang, S.; Li, L.; Chen, T.; Song, J.; Ti, S.; Li, W.; Luo, J.; Su, J.; Cai, C.; Li, R.; et al. Characteristics of Fair-weather Atmospheric Electric Field in Tibetan Ngari Prefecture. Chin. J. Space Sci. 2022, 42, 1137–1144. [Google Scholar] [CrossRef]
- Gurmani, S.; Ahmad, N.; Tacza, J.; Iqbal, T. First seasonal and annual variations of atmospheric electric field at a subtropical station in Islamabad, Pakistan. J. Atmos. Sol.-Terr. Phys. 2018, 179, 441–449. [Google Scholar] [CrossRef]
- Wu, T.; Lv, W.; Liu, X. Characteristics of atmospheric electric field near the earth’s surface under different weather conditions in Beijing. J. Appl. Meteorol. Sci. 2009, 20, 394–401. [Google Scholar]
- De, S.; Paul, S.; Barui, S.; Pal, P.; Bandyopadhyay, B.; Kala, D.; Ghosh, A. Studies on the seasonal variation of atmospheric electricity parameters at a tropical station in Kolkata, India. J. Atmos. Sol.-Terr. Phys. 2013, 105, 135–141. [Google Scholar] [CrossRef]
- Yaniv, R.; Yair, Y.; Price, C.; Katz, S. Local and global impacts on the fair-weather electric field in Israel. Atmos. Res. 2016, 172, 119–125. [Google Scholar] [CrossRef]
- Chalmers, J.A. The effects of condensation nuclei in atmospheric electricity. Geofis. Pura E Appl. 1957, 36, 211–217. [Google Scholar] [CrossRef]
- Smirnov, S.; Mikhailova, G.; Kapustina, O. Problem of the nature of the sunrise effect in diurnal variations in the electric field in Kamchatka: 1. Time variations in the electric field. Geomagn. Aeron. 2012, 52, 507–512. [Google Scholar] [CrossRef]
- Law, J. The ionisation of the atmosphere near the ground in fair weather. Q. J. R. Meteorol. Soc. 1963, 89, 107–121. [Google Scholar] [CrossRef]
- Marshall, T.C.; Rust, W.D.; Stolzenburg, M.; Roeder, W.P.; Krehbiel, P.R. A study of enhanced fair-weather electric fields occurring soon after sunrise. J. Geophys. Res. Atmos. 1999, 104, 24455–24469. [Google Scholar] [CrossRef]
- Crozier, W. Electrode effect during nighttime low-wind periods. J. Geophys. Res. 1963, 68, 3451–3458. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, X.; Chen, Y.; Liu, J.; Zhan, C.; Lv, G.; Hu, J.; Sun, M.; Zhang, Y. Geochemical evidence constraining genesis and mineral scaling of the Yangbajing geothermal field, Southwestern China. Water 2024, 16, 24. [Google Scholar] [CrossRef]
Date | All (Hours) | FW (Hours) | Date | All (Hours) | FW (Hours) |
---|---|---|---|---|---|
Nov 2021 | 671 | 449 | Jun 2023 | 665 | 286 |
Dec 2021 | 744 | 586 | Jul 2023 | 697 | 281 |
Jan 2022 | 696 | 448 | Aug 2023 | 684 | 409 |
Feb 2022 | 600 | 288 | Sep 2023 | 659 | 212 |
Mar 2022 | 719 | 358 | Oct 2023 | 736 | 469 |
Apr 2022 | 720 | 267 | Nov 2023 | 716 | 447 |
May 2022 | 736 | 334 | Dec 2023 | 665 | 460 |
Jun 2022 | 648 | 306 | Jan 2024 | 575 | 422 |
Jul 2022 | 686 | 258 | Feb 2024 | 574 | 266 |
Aug 2022 | 715 | 329 | Mar 2024 | 717 | 328 |
Sep 2022 | 694 | 309 | Apr 2024 | 632 | 247 |
Oct 2022 | 743 | 401 | May 2024 | 537 | 175 |
Nov 2022 | 717 | 379 | Jun 2024 | 617 | 245 |
Dec 2022 | 742 | 391 | Jul 2024 | 675 | 304 |
Jan 2023 | 744 | 364 | Aug 2024 | 582 | 247 |
Feb 2023 | 555 | 144 | Sep 2024 | 502 | 305 |
Mar 2023 | 743 | 338 | Oct 2024 | 282 | 160 |
Apr 2023 | 678 | 240 | Nov 2024 | 312 | 281 |
May 2023 | 558 | 139 | Dec 2024 | 639 | 327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.-N.; Fu, S.; Xu, Y.-Y.; Li, G.; Chen, T.; Xu, E.-M. Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station. Atmosphere 2025, 16, 976. https://doi.org/10.3390/atmos16080976
Peng J-N, Fu S, Xu Y-Y, Li G, Chen T, Xu E-M. Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station. Atmosphere. 2025; 16(8):976. https://doi.org/10.3390/atmos16080976
Chicago/Turabian StylePeng, Jia-Nan, Shuai Fu, Yan-Yan Xu, Gang Li, Tao Chen, and En-Ming Xu. 2025. "Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station" Atmosphere 16, no. 8: 976. https://doi.org/10.3390/atmos16080976
APA StylePeng, J.-N., Fu, S., Xu, Y.-Y., Li, G., Chen, T., & Xu, E.-M. (2025). Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station. Atmosphere, 16(8), 976. https://doi.org/10.3390/atmos16080976