Real-Time Insights into Indoor Air Quality in University Environments: PM and CO2 Monitoring
Abstract
1. Introduction
2. Materials and Methods
3. Results and Interpretations
3.1. CO2 Concentrations
3.2. Indoor PM Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadrizadeh, S.; Yao, R.; Yuan, F.; Awbi, H.; Bahnfleth, W.; Bi, Y.; Cao, G.; Croitoru, C.; De Dear, R.; Haghighat, F.; et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. J. Build. Eng. 2022, 57, 104908. [Google Scholar] [CrossRef]
- Pulimeno, M.; Piscitelli, P.; Colazzo, S.; Colao, A.; Miani, A. Indoor air quality at school and students’ performance: Recommendations of the UNESCO Chair on Health Education and Sustainable Development & the Italian Society of Environmental Medicine (SIMA). Health Promot. Perspect. 2020, 10, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.; Heath, G. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Archer, R.; Beale, V.; Bland, S.; Carter, H.; Castro-Faccetti, C.; Edwards, H.; Finneran, J.; Hama, S.; Jones, R.L.; et al. Schools’ air quality monitoring for health and education: Methods and protocols of the SAMHE initiative and project. Dev. Built Environ. 2023, 16, 100266. [Google Scholar] [CrossRef]
- Kochavi, S.A.; Kira, O.; Gal, E. Real-Time Monitoring of Environmental Parameters in Schools to Improve Indoor Resilience Under Extreme Events. Smart Cities 2025, 8, 7. [Google Scholar] [CrossRef]
- Gokul, T.; Kumar, K.R.; Prema, P.; Arun, A.; Balaji, P.; Faggio, C. Particulate pollution and its toxicity to fish: An overview. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 270, 109646. [Google Scholar] [CrossRef] [PubMed]
- Sangkham, S.; Phairuang, W.; Sherchan, S.P.; Pansakun, N.; Munkong, N.; Sarndhong, K.; Islam, M.A.; Sakunkoo, P. An update on adverse health effects from exposure to PM2.5. Environ. Adv. 2024, 18, 100603. [Google Scholar] [CrossRef]
- Mahiyuddin, W.R.W.; Ismail, R.; Mohammad Sham, N.; Ahmad, N.I.; Nik Hassan, N.M.N. Cardiovascular and Respiratory Health Effects of Fine Particulate Matters (PM2.5): A Review on Time Series Studies. Atmosphere 2023, 14, 856. [Google Scholar] [CrossRef]
- Contini, D.; Costabile, F. Air Pollution, Health Effects Indicators, the Exposome, and One Health. Atmosphere 2024, 15, 618. [Google Scholar] [CrossRef]
- Chauhan, B.V.S.; Corada, K.; Young, C.; Smallbone, K.L.; Wyche, K.P. Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles. Atmosphere 2024, 15, 572. [Google Scholar] [CrossRef]
- Hama, S.; Kumar, P.; Tiwari, A.; Wang, Y.; Linden, P.F. The underpinning factors affecting the classroom air quality, thermal comfort and ventilation in 30 classrooms of primary schools in London. Environ. Res. 2023, 236, 116863. [Google Scholar] [CrossRef]
- Canha, N.; Correia, C.; Mendez, S.; Gamelas, C.A.; Felizardo, M. Monitoring Indoor Air Quality in Classrooms Using Low-Cost Sensors: Does the Perception of Teachers Match Reality? Atmosphere 2024, 15, 1450. [Google Scholar] [CrossRef]
- Trompetter, W.J.; Boulic, M.; Ancelet, T.; Garcia-Ramirez, J.C.; Davy, P.K.; Wang, Y.; Phipps, R. The effect of ventilation on air particulate matter in school classrooms. J. Build. Eng. 2018, 18, 164–171. [Google Scholar] [CrossRef]
- Xia, T.; Raneses, J.; Schmiesing, B.; Garcia, R.; Walding, A.; DeMajo, R.; Schulz, A.; Batterman, S.A. How teacher behaviors and perceptions, air change rates, and portable air purifiers affect indoor air quality in naturally ventilated schools. Front. Public Health 2024, 12, 1427116. [Google Scholar] [CrossRef]
- Settimo, G.; Indinnimeo, L.; Inglessis, M.; De Felice, M.; Morlino, R.; di Coste, A.; Carriera, F.; Di Fiore, C.; Avino, P. CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces. Sustainability 2024, 16, 8619. [Google Scholar] [CrossRef]
- Fan, G.; Chang, H.; Sang, C.; Chen, Y.; Ning, B.; Liu, C. Evaluating Indoor Carbon Dioxide Concentration and Ventilation Rate of Research Student Offices in Chinese Universities: A Case Study. Processes 2022, 10, 1434. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, W.; Niu, Z.; Huo, D.; Zhou, J.; Li, H.; Cheng, P.; Wu, S.; Xiong, X.; Chen, N. An Approach for Assessing Human Respiration CO2 Emissions Using Radiocarbon Measurements and Bottom-Up Data Sets. J. Geophys. Res. Atmos. 2024, 129, e2023JD040578. [Google Scholar] [CrossRef]
- Li, M.; Bekö, G.; Zannoni, N.; Pugliese, G.; Carrito, M.; Cera, N.; Moura, C.; Wargocki, P.; Vasconcelos, P.; Nobre, P.; et al. Human metabolic emissions of carbon dioxide and methane and their implications for carbon emissions. Sci. Total Environ. 2022, 833, 155241. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ. Health Perspect. 2015, 124, 805–812. [Google Scholar] [CrossRef]
- Scully, R.R.; Basner, M.; Nasrini, J.; Lam, C.-w.; Hermosillo, E.; Gur, R.C.; Moore, T.; Alexander, D.J.; Satish, U.; Ryder, V.E. Effects of acute exposures to carbon dioxide on decision making and cognition in astronaut-like subjects. npj Microgravity 2019, 5, 17. [Google Scholar] [CrossRef]
- Snow, S.; Boyson, A.S.; Paas, K.H.; Gough, H.; King, M.-F.; Barlow, J.; Noakes, C.J. Exploring the physiological, neurophysiological and cognitive performance effects of elevated carbon dioxide concentrations indoors. Build. Environ. 2019, 156, 243–252. [Google Scholar] [CrossRef]
- Du, B.; Tandoc, M.C.; Mack, M.L.; Siegel, J.A. Indoor CO2 concentrations and cognitive function: A critical review. Indoor Air 2020, 30, 1067–1082. [Google Scholar] [CrossRef]
- Lowe, R.J.; Huebner, G.M.; Oreszczyn, T. Possible future impacts of elevated levels of atmospheric CO2 on human cognitive performance and on the design and operation of ventilation systems in buildings. Build. Serv. Eng. Res. Technol. 2018, 39, 698–711. [Google Scholar] [CrossRef]
- Cao, X.; Li, P.; Zhang, J.; Pang, L. Associations of Human Cognitive Abilities with Elevated Carbon Dioxide Concentrations in an Enclosed Chamber. Atmosphere 2022, 13, 891. [Google Scholar] [CrossRef]
- Yin, B.; Fang, W.; Liu, L.; Guo, Y.; Ma, X.; Di, Q. Effect of extreme high temperature on cognitive function at different time scales: A national difference-in-differences analysis. Ecotoxicol. Environ. Saf. 2024, 275, 116238. [Google Scholar] [CrossRef]
- Trezza, B.M.; Apolinario, D.; Sanchez de Oliveira, R.; Busse, A.L.; Teixeira Goncalves, F.L.; Nascimento Saldiva, P.H.; Jacob-Filho, W. Environmental heat exposure and cognitive performance in older adults: A controlled trial. Age 2015, 37, 43. [Google Scholar] [CrossRef]
- Tian, C.; Li, H.; Tian, S.; Tian, F.; Yang, H. The neurocognitive mechanism linking temperature and humidity with miners’ alertness: An fNIRS study. Sci. Rep. 2024, 14, 11796. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, M.; Liu, W. High temperature impairs cognitive performance during a moderate intensity activity. Build. Environ. 2020, 186, 107372. [Google Scholar] [CrossRef]
- Khan, A.M.; Finlay, J.M.; Clarke, P.; Sol, K.; Melendez, R.; Judd, S.; Gronlund, C.J. Association between temperature exposure and cognition: A cross-sectional analysis of 20,687 aging adults in the United States. BMC Public Health 2021, 21, 1484. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, J.; Miller, J.D.; Williams, P.B.; Chew, G.L.; Miller, J.D.; Zaitoun, F.; Phipatanakul, W.; Kennedy, K.; Barnes, C.; Grimes, C.; et al. Environmental assessment and exposure control of dust mites: A practice parameter. Ann. Allergy Asthma Immunol. 2013, 111, 465–507. [Google Scholar] [CrossRef] [PubMed]
- Arlian, L.G.; Platts-Mills, T.A.E. The biology of dust mites and the remediation of mite allergens in allergic disease. J. Allergy Clin. Immunol. 2001, 107, S406–S413. [Google Scholar] [CrossRef]
- Andersen, I.; Korsgaard, J. Asthma and the indoor environment: Assessment of the health implications of high indoor air humidity. Environ. Int. 1986, 12, 121–127. [Google Scholar] [CrossRef]
- Xue, Q.; Zou, M.; Guo, J.; Teng, Q.; Zhang, Q.; Sheng, L.; Xu, S.; Fang, C.; Yao, N.; Li, Y.; et al. Detection and assessment of dust mite allergens in an indoor environment in Anhui, China. Environ. Sci. Pollut. Res. 2022, 30, 3045–3055. [Google Scholar] [CrossRef]
- Charpin, D. Climate change and house-dust mite allergy. J. Clim. Change Health 2021, 2, 100012. [Google Scholar] [CrossRef]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environ. Health Perspect. 2011, 119, 748–756. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, S.; Kim, S.; Kim, D.; Seo, S. Association of exposure to indoor molds and dampness with allergic diseases at water-damaged dwellings in Korea. Sci. Rep. 2024, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Su, H.; Burnett, R.T.; Guo, Y.; Cheng, Y. Long-term exposure to PM2.5 has significant adverse effects on childhood and adult asthma: A global meta-analysis and health impact assessment. One Earth 2024, 7, 1953–1969. [Google Scholar] [CrossRef]
- Wu, J.-Z.; Ge, D.-D.; Zhou, L.-F.; Hou, L.-Y.; Zhou, Y.; Li, Q.-Y. Effects of particulate matter on allergic respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 95–102. [Google Scholar] [CrossRef]
- Streinu, D.-R.; Neagoe, O.C.; Borlea, A.; Icma, I.; Derban, M.; Stoian, D. Enhancing diagnostic precision in thyroid nodule assessment: Evaluating the efficacy of a novel cell preservation technique in fine-needle aspiration cytology. Front. Endocrinol. 2024, 15, 1438063. [Google Scholar] [CrossRef]
- Alinier, G.; Hssain, I. Chapter 16—Creating Effective Learning Environments: The Educator’s Perspective. In Clinical Simulation, 2nd ed.; Academic Press: New York, NY, USA, 2019; pp. 217–227. [Google Scholar] [CrossRef]
- Testo. Available online: https://www.testo.com/en-UK/iaq-probe-for-analyzing-indoor-air-quality-co-sub-2-/sub/p/0632-1543#tab-technicalData (accessed on 31 January 2025).
- European Agency for Safety and Health at Work. Available online: https://oshwiki.osha.europa.eu/en/themes/indoor-air-quality-iaq (accessed on 31 January 2025).
- EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 31 January 2025).
- Romanian Law No. 104 from 15 June 2011 in Relation to Air Quality (Original in Romanian: LEGE Nr. 104 Din 15 Iunie 2011 Privind Calitatea Aerului Înconjurător) Parliament of Romania. Available online: https://legislatie.just.ro/Public/DetaliiDocument/129642 (accessed on 31 January 2025).
- Fu, N.; Keun Kim, M.; Huang, L.; Liu, J.; Chen, B.; Sharples, S. Experimental and numerical analysis of indoor air quality affected by outdoor air particulate levels (PM1.0, PM2.5 and PM10), room infiltration rate, and occupants’ behaviour. Sci. Total Environ. 2022, 851 Pt 2, 158026. [Google Scholar] [CrossRef]
- Becher, R.; Øvrevik, J.; Schwarze, P.E.; Nilsen, S.; Hongslo, J.K.; Bakke, J.V. Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review. Int. J. Environ. Res. Public Health 2018, 15, 184. [Google Scholar] [CrossRef] [PubMed]
- Mangin, T.; Barrett, Z.; Palmer, Z.; Tang, D.; Nielson, S.; Sleeth, D.; Kelly, K. Understanding the effect of outdoor pollution episodes and HVAC type on indoor air quality. Build. Environ. 2025, 278, 112978. [Google Scholar] [CrossRef]
- Yao, H.; Qiu, S.; Lv, Y.; Wei, S.; Li, A.; Long, Z.; Wu, W.; Shen, X. Indoor Particulate Matter Transfer in CNC Machining Workshop and The Influence of Ventilation Strategies—A Case Study. Sustainability 2023, 15, 6227. [Google Scholar] [CrossRef]
- Licina, D.; Tian, Y.; Nazaroff, W.W. Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air 2017, 27, 791–802. [Google Scholar] [CrossRef] [PubMed]
Area | ID | Ventilation | Maximum Space Capacity | Real Occupancy | Occupancy Level | Date |
---|---|---|---|---|---|---|
Amphitheater | AMPH-1 | Natural | 200 | 138 | 69% | 10 April 2024 |
Amphitheater | AMPH-2 | Natural | 180 | 105 | 58% | 27 March 2025 |
Workshop | TOOL-1 | Natural | 20 | 17 | 85% | 9 April 2024 |
Classroom | CLASS-1 | Natural | 30 | 18 | 60% | 2 April 2025 |
Laboratory | LAB-1 | Natural | 15 | 14 | 93% | 10 April 2025 |
ID | Window Direction |
---|---|
AMPH-1 | Facing the main road |
AMPH-2 | Facing the main road |
TOOL-1 | Facing the inner courtyard |
CLASS-1 | Facing the inner courtyard |
LAB-1 | Facing the inner courtyard |
CO2 [ppm] | ||
---|---|---|
Exp. Cond. | Min | Max |
AMPH-1 | 1663 | 3018 |
AMPH-2 | 1060 | 2715 |
TOOL-1 | 582 | 794 |
CLASS-1 | 742 | 1755 |
LAB-1 | 990 | 2251 |
PM1 [µg/Nm3] | PM2.5 [µg/Nm3] | PM10 [µg/Nm3] | |||||||
---|---|---|---|---|---|---|---|---|---|
Exp. Cond. | Min | Max | Max(out) | Min | Max | Max(out) | Min | Max | Max(out) |
AMPH-1 | 8.1 | 19.5 | 12.11 | 9.6 | 28.1 | 18.74 | 9.7 | 36.8 | 22.02 |
AMPH-2 | 8.7 | 19.9 | 6.41 | 11.5 | 79.2 | 10.08 | 44.8 | 541.5 | 11.91 |
TOOL-1 | 14.9 | 57.3 | 17.02 | 16 | 62.5 | 25.29 | 22.2 | 140.3 | 32.65 |
CLASS-1 | 5.5 | 8.5 | 7.01 | 5.8 | 18.3 | 9.99 | 6.1 | 116.9 | 11.52 |
LAB-1 | 12.4 | 28.8 | 23.05 | 13.9 | 39.3 | 37.06 | 23.1 | 370.3 | 49.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustață, D.-M.; Bisorca, D.; Ionel, I.; Adjal, A.; Balogh, R.-M. Real-Time Insights into Indoor Air Quality in University Environments: PM and CO2 Monitoring. Atmosphere 2025, 16, 972. https://doi.org/10.3390/atmos16080972
Mustață D-M, Bisorca D, Ionel I, Adjal A, Balogh R-M. Real-Time Insights into Indoor Air Quality in University Environments: PM and CO2 Monitoring. Atmosphere. 2025; 16(8):972. https://doi.org/10.3390/atmos16080972
Chicago/Turabian StyleMustață, Dan-Marius, Daniel Bisorca, Ioana Ionel, Ahmed Adjal, and Ramon-Mihai Balogh. 2025. "Real-Time Insights into Indoor Air Quality in University Environments: PM and CO2 Monitoring" Atmosphere 16, no. 8: 972. https://doi.org/10.3390/atmos16080972
APA StyleMustață, D.-M., Bisorca, D., Ionel, I., Adjal, A., & Balogh, R.-M. (2025). Real-Time Insights into Indoor Air Quality in University Environments: PM and CO2 Monitoring. Atmosphere, 16(8), 972. https://doi.org/10.3390/atmos16080972