Experimental and Computational Characterization of a Modified Sioutas Cascade Impactor for Respirable Radioactive Aerosols
Abstract
:1. Introduction
2. Theory
3. Methods
3.1. Physical Tests with Dust
3.2. Computational Fluid Dynamics Modeling
4. Computational Fluid Dynamics Results and Discussions
Particle Deposition Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spent Fuel Transportation Risk Assessment–Final Report (NUREG-2125)|NRC.gov. Available online: https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr2125/index.html (accessed on 16 May 2022).
- Molecke, M.A.; Brockmann, J.E.; Klennert, L.A.; Steyskal, M.; Gregson, M.W.; Koch, W.; Nolte, O.; Brücher, W.; Pretzsch, G.G.; Autrusson, B.A.; et al. Spent fuel sabotage testing: Depleted uranium oxide aerosol results. In Proceedings of the Proposed for Presentation at the 15th International Symposium of the PATRAM 2007 Conference, Miami, FL, USA, 21–26 October 2007; Available online: https://www.osti.gov/biblio/1146837 (accessed on 19 April 2022).
- Di Lemma, F.; Colle, J.; Ernstberger, M.; Rasmussen, G.; Thiele, H.; Konings, R. RADES an experimental set-up for the characterization of aerosol release from nuclear and radioactive materials. J. Aerosol Sci. 2014, 70, 36–49. [Google Scholar] [CrossRef]
- Keever, T.; Montgomery, R.; Sasikumar, Y.; Kumar, V. Sister Rod Destructive Examinations (FY22) Appendix I: SNF Aerosols Released During Rod Fracture; US Department of Energy: Washington, DC, USA, 2023. [CrossRef]
- Mitchell, J.; Bauer, R.; Lyapustina, S.; Tougas, T.; Glaab, V. Non-impactor-Based Methods for Sizing of Aerosols Emitted from Orally Inhaled and Nasal Drug Products (OINDPs). AAPS PharmSciTech 2011, 12, 965–988. [Google Scholar] [CrossRef] [PubMed]
- Hinds, W. Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Constantinos, S. Personal Particle Monitor. U.S. Patent 6,786,105, 2002. Available online: https://patents.google.com/patent/US6786105B1/en (accessed on 8 September 2021).
- Sioutas, C. Development of New Generation Personal Monitors for Fine Particulate Matter (PM) and its Metal Content. NUATRC Research Report 2. 2004. Available online: https://www.skcinc.com/media/documents/KnowledgeCenter/Technical%20Information/Product%20Publications/Research%20Reports/NUATRC%20Sioutas%20Research%20Report.pdf (accessed on 8 September 2021).
- Misra, C.; Singh, M.; Shen, S.; Sioutas, C.; Hall, P.M. Development and evaluation of a personal cascade impactor sampler (PCIS). J. Aerosol Sci. 2002, 33, 1027–1047. [Google Scholar] [CrossRef]
- Marple, V.A.; Rubow, K.L.; Behm, S.M. A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Sci. Technol. 2007, 14, 434–446. [Google Scholar] [CrossRef]
- Demokritou, P.; Gupta, T.; Ferguson, S.; Koutrakis, P. Development and Laboratory Performance Evaluation of a Personal Cascade Impactor. J. Air Waste Manag. Assoc. 2002, 52, 1230–1237. [Google Scholar] [CrossRef]
- De Boer, A.H.; Gjaltema, D.; Hagedoorn, P.; Frijlink, H.W. Characterization of inhalation aerosols: A critical evaluation of cascade impactor analysis and laser diffraction technique. Int. J. Pharm. 2002, 249, 219–231. [Google Scholar] [CrossRef]
- Noël, A.; L’espérance, G.; Cloutier, Y.; Plamondon, P.; Boucher, J.; Philippe, S.; Dion, C.; Truchon, G.; Zayed, J. Assessment of the contribution of electron microscopy to nanoparticle characterization sampled with two cascade impactors. J. Occup. Environ. Hyg. 2013, 10, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Dechraksa, J.; Suwandecha, T.; Srichana, T. Deposition Pattern of Polydisperse Dry Powders in Andersen Cascade Impactor-Aerodynamic Assessment for Inhalation Experimentally and In Silico. Turk. J. Pharm. Sci. 2020, 17, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Vinchurkar, S.; Longest, P.W.; Peart, J. CFD simulations of the Andersen cascade impactor: Model development and effects of aerosol charge. J. Aerosol Sci. 2009, 40, 807–822. [Google Scholar] [CrossRef]
- Flynn, S.J.; Tong, Z.B.; Yang, R.Y.; Kamiya, H.; Yu, A.B.; Chan, H.K. Computational fluid dynamics (CFD) investigation of the gas–solid flow and performance of Andersen cascade impactor. Powder Technol. 2015, 285, 128–137. [Google Scholar] [CrossRef]
- Versteeg, H.; Zhao, P.; Blatchford, C.; Copley, M. A Computational Fluid Dynamics (CFD) Model of the Start-Up Kinetics of the Andersen Cascade Impactor (ACI). 2016. Available online: https://repository.lboro.ac.uk/articles/journal_contribution/A_computational_fluid_dynamics_CFD_model_of_the_start-up_kinetics_of_the_Andersen_Cascade_Impactor_ACI_/9554498/files/17186276.pdf (accessed on 17 May 2022).
- Ohsaki, S.; Mitani, R.; Fujiwara, S.; Nakamura, H.; Watano, S. Numerical Simulation of Particle Motions in Cascade Impactor and Human Respiratory System. MATEC Web Conf. 2021, 333, 02013. [Google Scholar] [CrossRef]
- ISO 12103-1: 2024; Road Vehicles—Test Contaminants for Filter Evaluation—Part 1: Arizona Test Dust. Available online: https://www.iso.org/standard/85949.html (accessed on 8 September 2021).
- Image Processing Toolbox-MATLAB. Available online: https://www.mathworks.com/products/image.html (accessed on 27 September 2021).
- Bansal, S.; Maini, R. A Comparative Analysis of Iterative and Ostu’s Thresholding Techniques. Int. J. Comput. Appl. 2013, 66, 975–8887. [Google Scholar]
- Singh, T.R.; Roy, S.; Singh, O.I.; Sinam, T.; Singh, K.M. A New Local Adaptive Thresholding Technique in Binarization. 2012. Available online: https://arxiv.org/abs/1201.5227v1 (accessed on 8 September 2021).
- Find Edges in Intensity Image-MATLAB Edge. Available online: https://www.mathworks.com/help/images/ref/edge.html (accessed on 9 September 2021).
- Morphological Reconstruction-MATLAB Imreconstruct. Available online: https://www.mathworks.com/help/images/ref/imreconstruct.html?searchHighlight=imreconstruct&s_tid=srchtitle (accessed on 9 September 2021).
- Marker-Controlled Watershed Segmentation-MATLAB & Simulink Example. Available online: https://www.mathworks.com/help/images/marker-controlled-watershed-segmentation.html (accessed on 9 September 2021).
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
- SIEMENS, STAR-CCM+ Simcenter Documentation. 2021. Available online: https://volupe.com/simcenter-star-ccm/simcenter-star-ccm-documentation-a-guide-to-success/ (accessed on 9 September 2021).
Impaction Stage | Orifice Width, mm | Orifice Length, mm | Separation Distance to Orifice Width, s/w | Measured Width, mm ± 0.015 mm | Measured Length, mm ± 0.015 mm |
---|---|---|---|---|---|
Stage MA | N/A | N/A | N/A | 3.87 | 19.52 |
Stage MB | N/A | N/A | N/A | 2.88 | 19.19 |
Stage MC | N/A | N/A | N/A | 1.92 | 19.38 |
Stage PA | 0.90 | 19.00 | 2.10 | 1.02 | 20.07 |
Stage PB | 0.50 | 21.00 | 3.78 | 0.51 | 20.07 |
Stage PC | 0.36 | 19.00 | 5.25 | 0.39 | 20.24 |
Stage PD | 0.14 | 25.00 | 13.50 | 0.26 | 20.29 |
Impaction Stage | Measured ΔP [Pa] |
---|---|
Stage MA | 0 |
Stage MB | 0 |
Stage MC | 30 ± 30 |
Stage PA | 62 ± 30 |
Stage PB | 128 ± 30 |
Stage PC | 220 ± 30 |
Stage PD | 675 ± 30 |
Overall | 1156 |
Component | Quantity |
---|---|
Silica (fine dust) | 69–77% |
Aluminum oxide | 8–14% |
Calcium oxide (mineral) | 2.5–5.5% |
Potassium oxide (mineral) | 2–5% |
Sodium oxide (mineral) | 1–4% |
Iron(III) oxide (hematite) | 4–7% |
Magnesium oxide | 1–2% |
Titanium dioxide | 0–1% |
Stage | d50 (µm) |
---|---|
Stage MA | 8.4 |
Stage MB | 6.4 |
Stage MC | 5.1 |
Stage PA | 5.1 |
Stage PB | 3.4 |
Stage PC | 1.1 |
Stage PD | 1.4 |
Parameter | Value |
---|---|
Meshing tool | Trimmer |
Base size | 5.00 × 10−4 m |
Surface growth rate | 1.30 |
Number of prism layers | 4.00 |
Prism layer thickness | 4.50 × 10−5 m |
Stage-1 notch custom size | 2.00 × 10−4 m |
Stage-2 notch custom size | 2.00 × 10−4 m |
Stage-3 notch custom size | 2.00 × 10−4 m |
Stage-4 notch custom size | 1.75 × 10−4 m |
Stage-5 notch custom size | 1.50 × 10−4 m |
Stage-6 notch custom size | 1.00 × 10−4 m |
Stage-7 notch custom size | 5.00 × 10−5 m |
Total number of cells | 3.87 × 106 |
Simulation | Measured | |||||
---|---|---|---|---|---|---|
Impaction Stage | Uavg [m/s] | ReW [-] | ReDh [-] | ΔP [Pa] | ΔP [Pa] | Abs. Relative Error [%] |
Stage MA | 1.69 | 418.2 | 693.5 | 0 | 0 | - |
Stage MB | 2.20 | 404.1 | 696.0 | 7 | 0 | - |
Stage MC | 3.24 | 398.1 | 714.5 | 12 | 30 ± 30 | - |
Stage PA | 5.58 | 363.7 | 714.0 | 34 ± 1 | 62 ± 30 | 45 |
Stage PB | 11.13 | 362.4 | 729.0 | 150 ± 9 | 128 ± 30 | 17 |
Stage PC | 14.62 | 370.6 | 726.9 | 258 ± 20 | 220 ± 30 | 17 |
Stage PD | 21.79 | 368.6 | 727.8 | 603 ± 68 | 675 ± 30 | 11 |
Overall | - | - | - | 1116 | 1156 | 3.5 |
Parameters | Values |
---|---|
Physical particle diameter distribution | Log-normal distribution with a range of [0.1, 10] µm and a mean of 3 µm (10 µm AED) |
Point inclusion probability | 0.1 |
Parcel streams | 100 |
Velocity | Same as fluid velocity |
Size Distribution (µm) | ||||||||
---|---|---|---|---|---|---|---|---|
Physical, ρ = 10.97 g/cc | AED | MA | MB | MC | PA | PB | PC | PD |
0.1–0.25 | 0.33–0.83 | 11.8% | 0% | 0% | 0% | 0% | 35.3% | 52.9% |
0.25–0.5 | 0.83–1.66 | 0.2% | 0% | 0% | 0.1% | 0.3% | 27.2% | 72% |
0.5–0.75 | 1.66–2.48 | 0.2% | 0.1% | 0.1% | 0.5% | 69.2% | 29.9% | 0% |
0.75–1.0 | 2.48–3.31 | 0.6% | 0.3% | 0.1% | 4.9% | 94.1% | 0% | 0% |
1.0–1.5 | 3.31–4.97 | 15.2% | 0.9% | 3.2% | 68.4% | 12.3% | 0% | 0% |
1.5–2.0 | 4.97–6.62 | 67.3% | 2.2% | 10.1% | 20.4% | 0% | 0% | 0% |
2.0–2.5 | 6.62–8.28 | 93.6% | 2.2% | 4% | 0.1% | 0% | 0% | 0% |
2.5–3.0 | 8.28–9.93 | 97.9% | 1.7% | 0.4% | 0% | 0% | 0% | 0% |
≥3.0 | ≥9.93 | 99.7% | 0.3% | 0% | 0% | 0% | 0% | 0% |
Parameter | Stage MA | Stage MB | Stage MC | Stage PA | Stage PB | Stage PC | Stage PD |
---|---|---|---|---|---|---|---|
Physical mean (µm) | 4.23 | 2.26 | 1.78 | 1.35 | 0.82 | 0.52 | 0.37 |
Physical median (µm) | 3.65 | 2.03 | 1.79 | 1.34 | 0.82 | 0.52 | 0.36 |
Physical STD (µm) | 2.15 | 0.84 | 0.31 | 0.22 | 0.14 | 0.05 | 0.04 |
AED mean (µm) | 14.01 | 7.49 | 5.90 | 4.47 | 2.72 | 1.72 | 1.23 |
AED median (µm) | 12.09 | 6.72 | 5.93 | 4.44 | 2.72 | 1.72 | 1.19 |
AED STD (µm) | 7.12 | 2.78 | 1.03 | 0.73 | 0.46 | 0.17 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-public-access-plan).
Share and Cite
Sasikumar, Y.; Kumar, V.; Montgomery, R.; Jain, P. Experimental and Computational Characterization of a Modified Sioutas Cascade Impactor for Respirable Radioactive Aerosols. Atmosphere 2025, 16, 156. https://doi.org/10.3390/atmos16020156
Sasikumar Y, Kumar V, Montgomery R, Jain P. Experimental and Computational Characterization of a Modified Sioutas Cascade Impactor for Respirable Radioactive Aerosols. Atmosphere. 2025; 16(2):156. https://doi.org/10.3390/atmos16020156
Chicago/Turabian StyleSasikumar, Yadukrishnan, Vineet Kumar, Rose Montgomery, and Prashant Jain. 2025. "Experimental and Computational Characterization of a Modified Sioutas Cascade Impactor for Respirable Radioactive Aerosols" Atmosphere 16, no. 2: 156. https://doi.org/10.3390/atmos16020156
APA StyleSasikumar, Y., Kumar, V., Montgomery, R., & Jain, P. (2025). Experimental and Computational Characterization of a Modified Sioutas Cascade Impactor for Respirable Radioactive Aerosols. Atmosphere, 16(2), 156. https://doi.org/10.3390/atmos16020156