Let It Snow: Intercomparison of Various Total and Snow Precipitation Data over the Tibetan Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
- is Spearman’s coefficient of rank correlation.
- d is the difference between the ranks for each pair.
- n is the number of paired observations.
3. Results
3.1. Cross-Correlation of the Reanalysis Data
3.2. Comparison of the GPM DPR Data with Reanalysis Data
3.3. Intercomparison of GPM DPR and Reanalysis Data
3.4. Comparing GPM DPR to Reanalysis Data with Temporal Adjustment
3.5. Intercomparison of GPM DPR and Reanalysis Data with Spatial Adjustment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPR | Dual-frequency precipitation radar |
ERA 5 | ECMWF Reanalysis v5 |
ERA 5 land | ECMWF Reanalysis v5 land |
ERA Interim | ECMWF Reanalysis - Interim |
FAR | False alarm rate |
FN | False negative |
FP | False positive |
GPM | Global Precipitation Measurement Mission |
HAR V2 | High Asia Refined analysis version 2 |
HSS | Heidke skill score |
IMERG | Integrated Multi-satellitE Retrievals for GPM |
JRA 55 | Japanese 55-year Reanalysis |
MERRA 2 | Modern-Era Retrospective analysis for Research and Applications, Version 2 |
MS | Matched scan |
NEXRAD | Next Generation Radar |
PC | Percentage correct |
PLPP | Probability of liquid precipitation phase |
POD | Probability of detection |
POFD | Probability of false detection |
PNS | Phase near surface |
SF | Snowfall precipitation |
SSF | Surface snowfall flag |
SSFPNS | Lowest common denominator of SSF and PNS |
TiP | Tibetan Plateau |
TN | True negative |
TP | True positive |
TP | Total precipitation |
Appendix A
Snow Precipitation | ||||||||
---|---|---|---|---|---|---|---|---|
ERA 5 | ERA 5 Land | ERA Interim | JRA 55 | MERRA 2 | HAR V2 | Optimal Value | ||
GPM | POD | 0.72/0.98/0.99 | 0.72/0.98/0.98 | 0.63/0.93/0.93 | 0.77/0.99/0.99 | 0.74/0.97/0.98 | 0.74/0.97/0.97 | 1 |
DPR | POFD | 0.31/0.68/0.61 | 0.31/0.70/0.64 | 0.0/0.0/0.0 | 0.50/0.86/0.85 | 0.41/0.82/0.79 | 0.49/0.87/0.86 | 0 |
SSF | FAR | 0.10/0.11/0.09 | 0.1/0.12/0.10 | 0.0/0.0/0.0 | 0.41/0.41/0.4 | 0.21/0.22/0.20 | 0.33/0.33/0.33 | 0 |
PNS | HSS | 0.32/0.40/0.48 | 0.32/0.37/0.44 | 0.0/0.0/0.0 | 0.27/0.14/0.15 | 0.32/0.21/0.25 | 0.25/0.12/0.13 | 1 |
SSFPNS | PC | 0.71/0.88/0.90 | 0.71/0.87/0.89 | 0.63/0.93/0.93 | 0.63/0.61/0.62 | 0.69/0.78/0.79 | 0.64/0.67/0.68 | 1 |
Snow Precipitation | ||||||||
---|---|---|---|---|---|---|---|---|
ERA 5 | ERA 5 Land | ERA Interim | JRA 55 | MERRA 2 | HAR V2 | Optimal Value | ||
GPM | POD | 0.75 | 0.74 | 1.0 | 0.81 | 0.78 | 0.76 | 1 |
DPR | POFD | 0.24 | 0.26 | 1.0 | 0.48 | 0.34 | 0.47 | 0 |
SF | FAR | 0.08 | 0.09 | 0.19 | 0.38 | 0.18 | 0.31 | 0 |
without | HSS | 0.40 | 0.39 | 0.0 | 0.33 | 0.42 | 0.30 | 1 |
adjustment | PC | 0.75 | 0.74 | 0.81 | 0.66 | 0.74 | 0.66 | 1 |
GPM | POD | 0.77 | 0.78 | 0.61 | 0.89 | 0.82 | 0.86 | 1 |
DPR | POFD | 0.11 | 0.10 | 0.0 | 0.35 | 0.20 | 0.29 | 0 |
SF | FAR | 0.04 | 0.04 | 0.0 | 0.29 | 0.11 | 0.21 | 0 |
temporal | HSS | 0.55 | 0.58 | 0.01 | 0.54 | 0.59 | 0.58 | 1 |
adjustment | PC | 0.80 | 0.81 | 0.61 | 0.77 | 0.81 | 0.79 | 1 |
GPM | POD | 0.8 | 0.79 | 1.0 | 1.0 | 0.82 | 0.84 | 1 |
DPR | POFD | 0.04 | 0.04 | 1.0 | 0.07 | 0.05 | 0.05 | 0 |
SF | FAR | 0.01 | 0.01 | 0.19 | 0.04 | 0.02 | 0.02 | 0 |
spatial | HSS | 0.60 | 0.59 | 0.0 | 0.94 | 0.67 | 0.71 | 1 |
adjustment | PC | 0.83 | 0.83 | 0.81 | 0.97 | 0.86 | 0.87 | 1 |
Snow Precipitation | ||||||||
---|---|---|---|---|---|---|---|---|
ERA 5 | ERA 5 Land | ERA Interim | JRA 55 | MERRA 2 | HAR V2 | Optimal Value | ||
GPM | POD | 0.78/0.98/0.99 | 0.78/0.98/0.98 | 0.71/0.92/0.93 | 0.80/0.99/0.81 | 0.79/0.97/0.97 | 0.79/0.97/0.97 | 1 |
DPR | POFD | 0.27/0.66/0.61 | 0.26/0.67/0.62 | 0.0/0.0/0.0 | 0.45/0.84/0.45 | 0.32/0.77/0.75 | 0.39/0.82/0.82 | 0 |
SSF | FAR | 0.09/0.14/0.11 | 0.09/0.14/0.11 | 0.0/0.0/0.0 | 0.34/0.39/0.33 | 0.15/0.20/0.18 | 0.25/0.30/0.30 | 0 |
PNS | HSS | 0.44/0.41/0.48 | 0.45/0.39/0.46 | 0.0/0.0/0.0 | 0.36/0.17/0.37 | 0.44/0.26/0.29 | 0.41/0.18/0.19 | 1 |
SSFPNS | PC | 0.77/0.86/0.89 | 0.77/0.86/0.88 | 0.71/0.92/0.93 | 0.68/0.64/0.69 | 0.76/0.79/0.81 | 0.72/0.70/0.70 | 1 |
References
- Luo, J.; Chen, H.; Zhou, B. Comparison of Snowfall Variations over China Identified from Different Snowfall/Rainfall Discrimination Methods. J. Meteorol. Res. 2020, 34, 1114–1128. [Google Scholar] [CrossRef]
- Rysman, J.F.; Panegrossi, G.; Sanò, P.; Marra, A.; Dietrich, S.; Milani, L.; Kulie, M. SLALOM: An All-Surface Snow Water Path Retrieval Algorithm for the GPM Microwave Imager. Remote Sens. 2018, 10, 1278. [Google Scholar] [CrossRef]
- Le, M.; Chandrasekar, V. Ground Validation of Surface Snowfall Algorithm in GPM Dual-Frequency Precipitation Radar. J. Atmos. Ocean. Technol. 2019, 36, 607–619. [Google Scholar] [CrossRef]
- Wang, Y.; Broxton, P.; Fang, Y.; Behrangi, A.; Barlage, M.; Zeng, X.; Niu, G. A Wet-Bulb Temperature-Based Rain-Snow Partitioning Scheme Improves Snowpack Prediction over the Drier Western United States. Geophys. Res. Lett. 2019, 46, 13825–13835. [Google Scholar] [CrossRef]
- Dong, W.; Lin, Y.; Wright, J.S.; Xie, Y.; Xu, F.; Yang, K.; Li, X.; Tian, L.; Zhao, X.; Cao, D. Connections Between a Late Summer Snowstorm Over the Southwestern Tibetan Plateau and a Concurrent Indian Monsoon Low-Pressure System. J. Geophys. Res. Atmos. 2018, 123, 13676–13691. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Guilloteau, C.; Nguyen, P.; Aghakouchak, A.; Hsu, K.L.; Busalacchi, A.; Turk, F.J.; Peters-Lidard, C.; Oki, T.; Duan, Q.; et al. Advancing Precipitation Estimation, Prediction, and Impact Studies. Bull. Am. Meteorol. Soc. 2020, 101, E1584–E1592. [Google Scholar] [CrossRef]
- Takbiri, Z.; Ebtehaj, A.; Foufoula-Georgiou, E.; Kirstetter, P.E.; Turk, F.J. A Prognostic Nested k-Nearest Approach for Microwave Precipitation Phase Detection over Snow Cover. J. Hydrometeorol. 2019, 20, 251–274. [Google Scholar] [CrossRef] [PubMed]
- Kolbe, C.; Thies, B.; Turini, N.; Liu, Z.; Bendix, J. Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 2: Precipitation Rates with Elektro-L2 and Insat-3D. Remote Sensing 2020, 12, 2114. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.; Hudak, D.; Schwaller, M. GPM Cold-Season Precipitation Experiment (GCPEx). 2012; p. 34. Available online: https://gpm.nasa.gov/sites/default/files/document_files/GCPEx_science_plan_CURRENT.pdf (accessed on 15 November 2022).
- Liao, L.; Meneghini, R. A Study on the Feasibility of Dual-Wavelength Radar for Identification of Hydrometeor Phases. J. Appl. Meteorol. Climatol. 2011, 50, 449–456. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Le, M.; Chandrasekar, V.; Brodzik, S.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document. 2018; p. 127. Available online: https://gpm.nasa.gov/sites/default/files/2022-06/ATBD_DPR_V07A.pdf (accessed on 15 November 2022).
- Petracca, M.; D’Adderio, L.P.; Porcù, F.; Vulpiani, G.; Sebastianelli, S.; Puca, S. Validation of GPM Dual-Frequency Precipitation Radar (DPR) Rainfall Products over Italy. J. Hydrometeorol. 2018, 19, 907–925. [Google Scholar] [CrossRef]
- Speirs, P.; Gabella, M.; Berne, A. A Comparison between the GPM Dual-Frequency Precipitation Radar and Ground-Based Radar Precipitation Rate Estimates in the Swiss Alps and Plateau. J. Hydrometeorol. 2017, 18, 1247–1269. [Google Scholar] [CrossRef]
- Le, M.; Chandrasekar, V.; Biswas, S. An Algorithm to Identify Surface Snowfall from GPM DPR Observations. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4059–4071. [Google Scholar] [CrossRef]
- Kubota, T.; Seto, S.; Satoh, M.; Nasuno, T.; Iguchi, T.; Masaki, T.; Kwiatkowski, J.M.; Oki, R. Cloud Assumption of Precipitation Retrieval Algorithms for the Dual-Frequency Precipitation Radar. J. Atmos. Ocean. Technol. 2020, 37, 2015–2031. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Meneghini, R.; Awaka, J.; Kubota, T.; Masaki, T.; Takahashi, N. The Precipitation Rate Retrieval Algorithms for the GPM Dual-frequency Precipitation Radar. J. Meteorol. Soc. Jpn. Ser. II 2021, 99, 205–237. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Kulie, M.; Milani, L.; Munchak, S.J.; Wood, N.B.; Levizzani, V. Satellite Estimation of Falling Snow: A Global Precipitation Measurement (GPM) Core Observatory Perspective. J. Appl. Meteorol. Climatol. 2019, 58, 1429–1448. [Google Scholar] [CrossRef]
- Sims, E.M.; Liu, G. A Parameterization of the Probability of Snow–Rain Transition. J. Hydrometeorol. 2015, 16, 1466–1477. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Wang, X.; Tolksdorf, V.; Otto, M.; Scherer, D. WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis. Int. J. Climatol. 2021, 41, 743–762. [Google Scholar] [CrossRef]
- Mekonnen, K.; Melesse, A.M.; Woldesenbet, T.A. Effect of temporal sampling mismatches between satellite rainfall estimates and rain gauge observations on modelling extreme rainfall in the Upper Awash Basin, Ethiopia. J. Hydrol. 2021, 598, 126467. [Google Scholar] [CrossRef]
- Urraca, R.; Lanconelli, C.; Gobron, N. Impact of the Spatio-Temporal Mismatch Between Satellite and In Situ Measurements on Validations of Surface Solar Radiation. J. Geophys. Res. Atmos. 2024, 129, e2024JD041007. [Google Scholar] [CrossRef]
- World Weather Research Program/Working Group on Numerical Experimentation Joint Working Group on Verification. Forecast Verification—Issues, Methods and FAQ. Available online: https://www.cawcr.gov.au/projects/verification/ (accessed on 30 September 2022).
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Ali, S.; Chen, Y.; Azmat, M.; Kayumba, P.M.; Ahmed, Z.; Mind’je, R.; Ghaffar, A.; Qin, J.; Tariq, A. Long-Term Performance Evaluation of the Latest Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Highlands of Indo-Pak (1981–2009). Remote Sens. 2022, 14, 4773. [Google Scholar] [CrossRef]
- Casella, D.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Johnson, B.T.; Kulie, M.S. Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR. Atmos. Res. 2017, 197, 64–75. [Google Scholar] [CrossRef]
- Haynes, J.M.; L’Ecuyer, T.S.; Stephens, G.L.; Miller, S.D.; Mitrescu, C.; Wood, N.B.; Tanelli, S. Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res. Atmos. 2009, 114, 2008JD009973. [Google Scholar] [CrossRef]
- Liu, G. Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res. Atmos. 2008, 113, 2007JD009766. [Google Scholar] [CrossRef]
- Wood, N.B.; L’Ecuyer, T.S.; Heymsfield, A.J.; Stephens, G.L.; Hudak, D.R.; Rodriguez, P. Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos. 2014, 119, 8941–8961. [Google Scholar] [CrossRef]
- Edel, L.; Rysman, J.F.; Claud, C.; Palerme, C.; Genthon, C. Potential of Passive Microwave around 183 GHz for Snowfall Detection in the Arctic. Remote Sens. 2019, 11, 2200. [Google Scholar] [CrossRef]
- Tang, G.; Long, D.; Behrangi, A.; Wang, C.; Hong, Y. Exploring Deep Neural Networks to Retrieve Rain and Snow in High Latitudes Using Multisensor and Reanalysis Data. Water Resour. Res. 2018, 54, 8253–8278. [Google Scholar] [CrossRef]
- Hudak, D.; Rodriguez, P.; Donaldson, N. Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. J. Geophys. Res. Atmos. 2008, 113, 2008JD009992. [Google Scholar] [CrossRef]
- King, F.; Fletcher, C.G. Using CloudSat-Derived Snow Accumulation Estimates to Constrain Gridded Snow Water Equivalent Products. Earth Space Sci. 2021, 8, e2021EA001835. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The Cloudsat Mission and the A-Train: A New Dimension of Space-Based Observations of Clouds and Precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- King, F.; Fletcher, C.G. Using CloudSat-CPR Retrievals to Estimate Snow Accumulation in the Canadian Arctic. Earth Space Sci. 2020, 7, e2019EA000776. [Google Scholar] [CrossRef]
- Sun, S.; Shi, W.; Zhou, S.; Chai, R.; Chen, H.; Wang, G.; Zhou, Y.; Shen, H. Capacity of Satellite-Based and Reanalysis Precipitation Products in Detecting Long-Term Trends across Mainland China. Remote Sens. 2020, 12, 2902. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Bai, L.; Wen, Y.; Shi, C.; Yang, Y.; Zhang, F.; Wu, J.; Gu, J.; Pan, Y.; Sun, S.; Meng, J. Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data? Remote Sens. 2020, 12, 683. [Google Scholar] [CrossRef]
- Chen, Y.; Sharma, S.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; Khadka, N. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmos. Res. 2021, 250, 105365. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Li, Y.; Duan, W.; Li, B.; Fang, G.; Li, Z. Evaluation of multiple gridded snowfall datasets using gauge observations over high mountain Asia. J. Hydrol. 2023, 626, 130346. [Google Scholar] [CrossRef]
- Hamm, A.; Arndt, A.; Kolbe, C.; Wang, X.; Thies, B.; Boyko, O.; Reggiani, P.; Scherer, D.; Bendix, J.; Schneider, C. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau. Water 2020, 12, 3271. [Google Scholar] [CrossRef]
- Feng, F.; Wang, K. Merging Satellite Retrievals and Reanalyses to Produce Global Long-Term and Consistent Surface Incident Solar Radiation Datasets. Remote Sens. 2018, 10, 115. [Google Scholar] [CrossRef]
- Yang, D. Quantifying the spatial scale mismatch between satellite-derived solar irradiance and Situ Meas. A Case Study Using CERES Synop. Surf. Shortwave Flux Oklahoma Mesonet. J. Renew. Sustain. Energy 2020, 12, 056104. [Google Scholar] [CrossRef]
- Qin, Y.; McVicar, T.R.; Huang, J.; West, S.; Steven, A.D. On the validity of using ground-based observations to validate geostationary-satellite-derived direct and diffuse surface solar irradiance: Quantifying the spatial mismatch and temporal averaging issues. Remote Sens. Environ. 2022, 280, 113179. [Google Scholar] [CrossRef]
Data Set | Sub Data Set | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|---|
GPM DPR (Level 2A) (Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar) | total precipitation, snowfall precipitation, snowfall flags (SSF, PNS, SSFPNS) | 5 km (swath width 245 km) | 1.5 h (March 2014–near real time) | PPS NASA (2022) https://gpm.nasa.gov/data/directory accessed on 15 November 2022. |
GPM IMERG (Level 3, Final Run) (GPM Integrated Multi-satellitE Retrievals for GPM) | probability of liquid precipitation phase | 11 km (global) | 30 min (March 2014–near real time) | PPS NASA (2019) https://gpm.nasa.gov/data/directory accessed on 15 November 2022. |
ERA 5 (ECMWF Reanalysis v5) | total precipitation, snowfall precipitation | 30 km (global) | 1 h (1979–near real time) | Service, C.C.C. (2019) European Centre for Medium-Range Weather Forecasts https://cds.climate.copernicus.eu/ accessed on 15 November 2022. |
ERA 5 land (ECMWF Reanalysis v5 land) | total precipitation, snowfall precipitation | 9 km (global) | 1 h (1981–near real time) | [19] European Centre for Medium-Range Weather Forecasts https://cds.climate.copernicus.eu/ accessed on 15 November 2022. |
ERA Interim (ECMWF Reanalysis—Interim) | total precipitation, snowfall precipitation | 80 km (global) | 3 h (1979–August 2019) | [20] European Centre for Medium-Range Weather Forecasts https://www.wdc-climate.de/ui/project?acronym=ERA_INTERIM accessed on 15 November 2022. |
JRA 55 (Japanese 55-year Reanalysis) | total precipitation, snowfall precipitation | 55 km (global) | 6 h (1958–near real time) | [21] Japan Meteorological Agency https://rda.ucar.edu/datasets/ds628-0/ accessed on 15 November 2022. |
MERRA 2 (Modern-Era Retrospective analysis for Research and Applications, Version 2) | total precipitation, snowfall precipitation | 55 × 69 km (global) | 1 h (1980–near real time) | [22] NASA’s Global Modeling and Assimilation Office https://disc.gsfc.nasa.gov/ accessed on 15 November 2022. |
HAR V2 (High Asia Refined analysis version 2) | total precipitation, snowfall precipitation | 10 km (High Mountain Asia) | 1 h (2004–2018) | [23] https://data.klima.tu-berlin.de/HAR/v2/d10km/d/2d/ accessed on 15 November 2022 |
Snow Precipitation | ||||||||
---|---|---|---|---|---|---|---|---|
ERA 5 | ERA 5 Land | ERA Interim | JRA 55 | MERRA 2 | HAR V2 | Optimal Value | ||
GPM | POD | 0.75/0.98/0.98 | 0.77/0.98/0.99 | 0.61/0.93/0.93 | 0.86/0.99/1.0 | 0.78/0.98/0.98 | 0.86/0.99/0.99 | 1 |
DPR | POFD | 0.12/0.41/0.35 | 0.10/0.38/0.33 | 0.0/0.0/1.0 | 0.37/0.79/0.78 | 0.24/0.66/0.63 | 0.30/0.75/0.75 | 0 |
SSF | FAR | 0.04/0.04/0.04 | 0.04/0.39/0.03 | 0.0/0.0/0.0 | 0.29/0.28/0.28 | 0.11/0.12/0.11 | 0.21/0.20/0.20 | 0 |
PNS | HSS | 0.48/0.64/0.70 | 0.54/0.67/0.72 | 0.01/0.01/0.0 | 0.5/0.26/0.26 | 0.49/0.42/0.45 | 0.56/0.31/0.32 | 1 |
SSFPNS | PC | 0.78/0.94/0.95 | 0.80/0.95/0.96 | 0.61/0.93/0.93 | 0.75/0.74/0.74 | 0.77/0.87/0.88 | 0.79/0.80/0.80 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolbe, C.; Thies, B.; Bendix, J. Let It Snow: Intercomparison of Various Total and Snow Precipitation Data over the Tibetan Plateau. Atmosphere 2024, 15, 1076. https://doi.org/10.3390/atmos15091076
Kolbe C, Thies B, Bendix J. Let It Snow: Intercomparison of Various Total and Snow Precipitation Data over the Tibetan Plateau. Atmosphere. 2024; 15(9):1076. https://doi.org/10.3390/atmos15091076
Chicago/Turabian StyleKolbe, Christine, Boris Thies, and Jörg Bendix. 2024. "Let It Snow: Intercomparison of Various Total and Snow Precipitation Data over the Tibetan Plateau" Atmosphere 15, no. 9: 1076. https://doi.org/10.3390/atmos15091076
APA StyleKolbe, C., Thies, B., & Bendix, J. (2024). Let It Snow: Intercomparison of Various Total and Snow Precipitation Data over the Tibetan Plateau. Atmosphere, 15(9), 1076. https://doi.org/10.3390/atmos15091076