Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Ensemble Means of CMIP3, CMIP5, and CMIP6
3.2. Simulations by Individual CMIP6 Models
3.3. Projection of the Warming up to 2100
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bokuchava, D.; Semenov, V. Mechanisms of the Early 20th Century Warming in the Arctic. Earth-Science Rev. 2021, 222, 103820. [Google Scholar] [CrossRef]
- Chylek, P.; Folland, C.; Frankcombe, L.; Dijkstra, H.; Lesins, G.; Dubey, M. Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- England, M.R. Are Multi-Decadal Fluctuations in Arctic and Antarctic Surface Temperatures a Forced Response to Anthropogenic Emissions or Part of Internal Climate Variability? Geophys. Res. Lett. 2021, 48, e2020GL090631. [Google Scholar] [CrossRef]
- Johannessen, O.M.; Bengtsson, L.; Miles, M.W.; Kuzmina, S.I.; Semenov, V.A.; Alekseev, G.V.; Nagurnyi, A.P.; Zakharov, V.F.; Bobylev, L.P.; Pettersson, L.H.; et al. Arctic climate change: Observed and modelled temperature and sea-ice variabil-ity. Tellus A Dyn. Meteorol. Oceanogr. 2004, 56, 328–341. [Google Scholar] [CrossRef]
- Beitsch, A.; Jungclaus, J.; Zanchettin, D. Patterns of decadal-scale Arctic warming events in simulated climate. Clim. Dyn. 2014, 43, 1773–1789. [Google Scholar] [CrossRef]
- Bengtsson, L.; Semenov, V.A.; Johannessen, O.M. The Early Twentieth-century warming in the arctic—A possible mechanism. J. Clim. 2004, 17, 4045–4057. [Google Scholar] [CrossRef]
- Chylek, P.; Folland, C.K.; Lesins, G.; Dubey, M.K.; Wang, M. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Tokinaga, H.; Xie, S.-P.; Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl. Acad. Sci. USA 2017, 114, 6227–6232. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Hu, A.; Castruccio, F.; England, M.H.; Bates, S.C.; Danabasoglu, G.; McGregor, S.; Arblaster, J.M.; Xie, S.P.; Rosenbloom, N. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci. 2021, 14, 36–42. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Kageyama, M.; Braconnot, P.; Charbit, S.; Krinner, G.; Ritz, C.; Guilyardi, E.; Jouzel, J.; Abe-Ouchi, A.; Crucifix, M.; et al. Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Clim. Dyn. 2006, 26, 513–529. [Google Scholar] [CrossRef]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Previdi, M.; Smith, K.L.; Polvani, L.M. Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett. 2021, 16, 093003. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Bitz, C.M.; Armour, K.C.; Proistosescu, C.; Kang, S.M.; Xie, S.-P.; Kim, D.; McGregor, S.; Zhang, W.; Zhao, S.; et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Chang. 2018, 8, 1076–1081. [Google Scholar] [CrossRef]
- Chylek, P.; Folland, C.; Klett, J.D.; Wang, M.; Hengartner, N.; Lesins, G.; Dubey, M.K. Annual mean Arctic Amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophys. Res. Lett. 2022, 49, e2022GL099371. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. THE WCRP CMIP3 Multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Taylor, K.; Stouffer, R.; Meehl, G. An overview of CMIP5 and experiment design. Bull. Am. Meteorol. Soc. 2015, 93, 485–4498. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- IPCC. Climate change 2021: The physical science basis. In Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmonte, V., Ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Hausfather, Z.; Marvel, K.; Schmidt, G.A.; Nielsen-Gammon, J.W.; Zelinka, M. Climate simulations: Recognize the ‘hot model’ problem. Nature 2022, 605, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.; Rafael, S.; Monteiro, A.; Rodrigues, V.; Lopes, M.; Rocha, A. How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Sci. Rep. 2022, 12, 11983. [Google Scholar] [CrossRef] [PubMed]
- IPCC Third Assessment Report—TAR. Review of Major Climate-Change Scenario Exercises. 2001. Available online: https://www.climatescience.gov/Library/sap/sap2-1/finalreport/sap2-1b-final-section3.pdf (accessed on 20 March 2024).
- IPCC. Annex II: Climate System Scenario. Tables [Prather, M., G. Flato, P. Friedlingstein, C. Jones, J.-F. Lamarque, H. Liao and P. Rasch (eds.)]. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Lee, J.-Y.; Marotzke, J. Future Global Climate: Scenario-Based Projections and Near Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 553–672. [Google Scholar] [CrossRef]
- Met Office Hadley Centre; University of East Anglia Climatic Research Unit; Morice, C.P.; Kennedy, J.; Rayner, N.; Winn, J.P.; Hogan, E.; Killick, R.; Dunn, R.; Osborn, T.; et al. HadCRUT.5.0.0.0: Ensemble Near-Surface Temperature Anomaly Grids and Time Series. Centre for Environmental Data Analysis. 2020. Available online: https://catalogue.ceda.ac.uk/uuid/b9698c5ecf754b1d981728c37d3a9f02 (accessed on 16 January 2024).
- Chylek, P.; Folland, C.K.; Klett, J.D.; Wang, M.; Lesins, G.; Dubey, M.K. High values of the Arctic Amplification in the early decades of the 21st century: Causes of discrepancy by CMIP6 models between observation and simulation. J. Geophys. Res. Atmos. 2023, 128, e2023JD039269. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guidelines on the Calculation of Climate Normals; WMO: Geneva, Switzerland, 2017; WMO-No. 1203. [Google Scholar]
- World Meteorological Organization. Calculation of Monthly and Annual 30-year Standard Normals; WMO: Geneva, Switzerland, 1989; WMO/TD-No. 341. [Google Scholar]
- Merrifield, A.L.; Brunner, L.; Lorenz, R.; Humphrey, V.; Knutti, R. Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications. Geosci. Model Dev. 2023, 16, 4715–4747. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M.; Bond, N.A.; Walsh, J.E.; Kattsov, V.M.; Chapman, W.L. Considerations in the selection of global climate models for regional climate projections: The Arctic as a case study. J. Clim. 2011, 24, 1583–1597. [Google Scholar] [CrossRef]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [PubMed]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.-C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Folland, C.K.; Boucher, O.; Colman, A.; Parker, D.E. Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci. Adv. 2018, 4, eaao5297. [Google Scholar] [CrossRef]
- Sweeney, A.J.; Fu, Q.; Po-Chedley, S.; Wang, H.; Wang, M. Internal variability in-creased Arctic amplification during 1980–2022. Geophys. Res. Lett. 2023, 50, e2023GL106060. [Google Scholar] [CrossRef]
CMIP6 Models ±15% Global (GL) Temp | CMIP6 Models ±15% Arctic (ARCT) Temp | CMIP6 Models ±15% GL and ARCT Temperature |
---|---|---|
GFDL-ESM4 | GFDL-ESM4 | GFDL-ESM4 |
MPI-ESM1-2-LR | MPI-ESM1-2-LR | MPI-ESM1-2-LR |
NorESM2-LM | NorESM2-LM | NorESM2-LM |
CNRM-ESM2 | ACCESS-ESM1-5v | |
CNRM-CM6 | ACCESS-CM2 | |
FGOALS-g3 | FIO-ESM-2-0 | |
CESM2 | CESM2-WAACM | |
GISS-E2-1-G-p3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chylek, P.; Folland, C.K.; Klett, J.D.; Wang, M.; Lesins, G.; Dubey, M.K. Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature? Atmosphere 2024, 15, 567. https://doi.org/10.3390/atmos15050567
Chylek P, Folland CK, Klett JD, Wang M, Lesins G, Dubey MK. Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature? Atmosphere. 2024; 15(5):567. https://doi.org/10.3390/atmos15050567
Chicago/Turabian StyleChylek, Petr, Chris K. Folland, James D. Klett, Muyin Wang, Glen Lesins, and Manvendra K. Dubey. 2024. "Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?" Atmosphere 15, no. 5: 567. https://doi.org/10.3390/atmos15050567
APA StyleChylek, P., Folland, C. K., Klett, J. D., Wang, M., Lesins, G., & Dubey, M. K. (2024). Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature? Atmosphere, 15(5), 567. https://doi.org/10.3390/atmos15050567