Improvement in the Adaptation and Resilience of the Green Areas of Yerevan City to Climate–Ecological Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Greening History and Current Challenges
2.3. Materials and Methods
3. Results
3.1. Climate Change as a Serious Challenge for the Greening Strategy
3.2. Air Pollution
3.3. The Challenges for Green Area Distribution
3.4. Climate–Ecological and Dendrological Features of the Green Areas
4. Discussions
5. Conclusions
- Due to Yerevan’s dry continental climate, low precipitation and limited water resources, greening efforts require artificial irrigation and the selection of drought-resistant plants, especially considering the increasing yearly average temperatures and frequency of heatwaves.
- The city faces extremely unfavorable climate–ecological conditions, characterized by a significant industrial concentration, mining activities, continuous construction and heavy traffic, resulting in pollution exceeding acceptable limits, including heavy metals and gas pollutants.
- Poor ecological conditions correlate with poor health indicators, with carcinogenic and cardiovascular diseases being particularly prevalent, and with risks likely to persist as urban development continues unabated.
- Yerevan’s dense population and uneven distribution of green areas highlight the need for increased and balanced green space development to meet World Health Organization (WHO) standards.
- The city’s green areas predominantly feature broadleaf and evergreen tree species and shrubs, including ecologically sustainable and decorative varieties requiring adequate care. A reconsideration of plant types is necessary to include more sustainable, decorative species adapted to arid conditions, aligning with the goals of the Paris Agreement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowen, K.J.; Parry, M.A. The Evidence Base for Linkages between Green Infrastructure, Public Health and Economic Benefit; Bowen, K.J., Parry, M., Eds.; Government of Victoria: Melbourne, VIC, Australia, 2015. Available online: https://vises.org.au (accessed on 29 March 2024).
- Emilsson, T.; Ode Sang, Å. Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: New York, NY, USA, 2017; pp. 15–27. [Google Scholar]
- Aram, F.M.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, M.; Wendel-Vos, W.; van Poppel, M.; Kemper, H.; van Mechelen, W.; Maas, J. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- Arvanitidis, P.A.; Papagiannitsis, G. Urban open spaces as a common: The credibility thesis and common property in a self-governed park of Athens, Greece. Cities 2020, 97, 102480. [Google Scholar] [CrossRef]
- Faraniza, Z. Application of urban ecological concepts towards healthy and humane cities. In Journal of Physics: Conference Series, Volume 1940, The 4th International Conference on Mathematics, Science, Education and Technology (ICOMSET) in Conjunction with the 2nd International Conference on Biology, Science and Education (ICoBioSE) 2020 23–24 July 2020, Padang, Indonesia; IOP Publishing Ltd.: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Salmon, P.; Stroh, E.; Herrera-Duenas, A.; von Post, M.; Isaksson, C. Oxidative stress in birds along a NOx and urbanization gradient: An interspecific approach. Sci. Total Environ. 2018, 622–623, 635–643. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.J. The history of urban ecology: An ecologist’s perspective. In Urban Ecology: Patterns, Processes, and Applications; Niemelä, J., Breuste, J.H., Elmqvist, T., Guntenspergen, G., James, P., McIntyre, N.E., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 5–13. [Google Scholar]
- Brown, J.S.; Zeman, K.L.; Bennett, W.D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Crit. Care Med. 2002, 166, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-J.; Kim, B.; Lee, K. Air Pollution Exposure and Cardiovascular Disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Beatley, T.; Konijnendijk, C.C. Urban landscapes for public health. In Nature and Public Health: The Role of Nature in Improving the Health of a Population; Series 2015, Oxford Textbook of Nature and Public Health—Matilda van den Bosch, William Bird; Bird, W., van den Bosch, M., Eds.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Denche-Zamorano, Á.; Pastor-Cisneros, R.; Moreno-Moreno, L.; Carlos-Vivas, J.; Mendoza-Muñoz, M.; Contreras-Barraza, N.; Gil-Marín, M.; Barrios-Fernández, S. Physical Activity Frequency and Health-Related Quality of Life in Spanish Children and Adolescents with Asthma: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 14611. [Google Scholar] [CrossRef] [PubMed]
- Darlington, A.; Chan, M.; Malloch, D.; Pilger, C.; Dixon, M. The Biofiltration of Indoor Air: Implications for Air Quality. Indoor Air 2000, 10, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Darlington, A.; Dat, J.; Dixon, M. The Biofiltration of Indoor Air: Air Flux and Temperature Influence the Removal of Toluene, Ethylbenzene, and Xylene. Environ. Sci. Technol. 2001, 35, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Anguluri, R.; Narayanan, P. Role of green space in urban planning: Outlook towards smart cities. Urban For. Urban Green. 2017, 25, 58–65. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; MacIntyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2020, 15, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.; van den Bosch, M.; Bardekjian, A.C. Urban trees and human health: A scoping review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Nersisyan, G.; Stanisław, W.; Gawroński, S.W. Removal of Particular Matter and Trace Elements from Ambient Air by Urban Greenery in Winter Season. Environ. Sci. Pollut. Res. J. 2019, 26, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Popek, R.; Gawrońska, H.; Sæbø, A.; Wrochna, M.; Gawroński, S.W. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes a 3-year study. Int. J. Phytoremediat. 2013, 15, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawrońska, H.; Gawroński, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, T.S.; Perez, L.; Künzli, N.; Munters, E.; Nemery, B. Public health importance of triggers of myocardial infarction: A comparative risk assessment. Lancet 2011, 377, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J. Green infrastructure and health. Ann. Rev. Public Health 2020, 42, 317–328. [Google Scholar] [CrossRef]
- WHO. WHO-World Health Organization. Ambient (Outdoor) Air Pollution. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 12 April 2021).
- FAO. Forests and sustainable cities. Unasylva 2018, 250, 1–84. [Google Scholar]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Bryan, J.H. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal. 2012, 32, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Brans, K.I.; Jansen, M.; Vanoverbeke, J.; Tüzün, N.; Stoks, R.; Meester, L.D. The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Chang. Biol. 2017, 23, 5218–5227. [Google Scholar] [CrossRef] [PubMed]
- FAO. Guidelines on Urban and Periurban Forestry; Salbitano, F., Borelli, S., Conigliaro, M., Eds.; FAO Forestry Paper No. 178; FAO: Rome, Italy, 2016. [Google Scholar]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Jordan, H.C.; Horsley, J. Value of urban green spaces in promoting healthy living and wellbeing: Prospects for planning. Risk Manag. Healthc. Policy 2015, 8, 131–137. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (Regional Office for Europe). Urban Green Spaces and Health; World Health Organization: Geneva, Switzerland, 2016; Volume iii, 80p. [Google Scholar]
- Konijnendijk, C. Evidence-based guidelines for greener, healthier, more resilient neighborhoods: Introducing the 3-30-300 rule. J. For. Res. 2022, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Urban Forest Diversity Guidelines. Tree Species Selection Strategy for the City of Melbourne. Prepared on Behalf of City of Melbourne by ASPECT Studios and Tree Logic. 2011. Available online: https://www.melbourne.vic.gov.au/SiteCollectionDocuments/urban-forest-diversity-guidelines.pdf (accessed on 29 March 2024).
- Wang, X.L.; Wang, L.; Wang, S. Marketisation as a channel of international technology diffusion and green total factor productivity: Research on the spillover effect from China’s first-tier cities. Technol. Anal. Strateg. Manag. 2021, 33, 491–504. [Google Scholar] [CrossRef]
- Torkildsen, G. Leisure and Recreation Management; Psychology Press: London, UK, 2005; Available online: https://samples.sainsburysebook.co.uk/9781134390083_sample_544268.pdf (accessed on 16 August 2016).
- Khan, A. Planning Standards for Recreational Facilities and Open Space in the Context Areas of Bangladesh in Khan, A.M. 2014. Revisiting Planning Standards for Recreational Facilities in Urban Areas. Equality in the City: Making Cities Socially Cohesive. World Town Planning Day 2014. Available online: http://www.bip.org.bd/SharingFiles/journal_book/20141118151124.pdf (accessed on 2 August 2016).
- Fayvush, G.; Aghababyan, K.; Aleksanyan, A.; Arakelyan, M.; Gasparyan, A.; Kalashian, M.; Margaryan, M.; Nanagulyan, S. Biodiversity Conservation Problems. In Biodiversity of Armenia; Springer: Cham, Switzerland. [CrossRef]
- Harutyunyan, L.V.; Harutyunyan, S.L. Dendroflora of Armenia; Book Two; Luys Publishing House: Yerevan, Armenia, 1987; 464p. (In Armenian) [Google Scholar]
- Khachatryan, A. Contemporary state of landscaping of the city of Gyumri. Izv. Agrar. Nauk. 2006, 4, 141–145. [Google Scholar]
- Gyumri-GCAP_Eng.pdf. Available online: https://ebrdgreencities.com/ (accessed on 29 March 2024).
- Vanadzor Public Areas. Available online: https://urbanista.am/vanadzor-publicspace (accessed on 29 March 2024).
- RA Government Decision N108 N of 8 Febuary 2018 “The Decision of the ra Government on Determining the Requirements for the Size and Species Composition of the Green Belts of Residences and Recognize the Decision n 1318 of 30 October 2008 of the ra Government as Lost Force about”. Available online: https://www.arlis.am/DocumentView.aspx?DocID=119785 (accessed on 29 March 2024).
- Santrosyan, A.V.; Ishkhanyan, Y.; Nersisyan, G.S. The correct development strategy of environmental laws in the process of improving the atmospheric air. Armen. J. Forensic Crim. 2020, 4, 63–70. Available online: http://journal.nbe.am/wp-content/uploads/2020/12/Amsagir_042_2020_for-web.pdf (accessed on 29 March 2024).
- Edilyan, R.A. Land cover. In Physical Geography of the Armenian SSR, 1971 (470p.); National Academy of Sciences of Armenian SSR: Yerevan, Armenia, 1971; pp. 220–228. (In Armenian) [Google Scholar]
- Edilyan, R.A. General Conditions of Soil Formation, Maps of Geography and Systems Soil of the Armenian SSR. National Academy of Sciences of Armenia: Yerevan, Armenia, 1976; pp. 17–51. (In Armenian) [Google Scholar]
- Kovats, S.; Akhtar, R. Climate, climate change and human health in Asian cities. Environ. Urban. 2008, 20, 165–175. [Google Scholar] [CrossRef]
- Azatian, V.G. Yerevan: [Album Guide]; Parberakan: Yerevan, Armenia, 1989; 319p. (In Armenian) [Google Scholar]
- World Meteorological Organization Climate Normals for 1981–2010. 2021. World Meteorological Organization. Archived from the Original on 9 October 2021. Retrieved 9 October 2021. WMO Climatological Normals|World Meteorological Organization. 2021. Available online: https://community.wmo.int/en/wmo-climatological-normals (accessed on 29 March 2024).
- Statistical Handbook 2021. Marzers and Yerevan City of the Republic of Armenia in Figures, 2021, Statistical Handbook. Available online: https://armstat.am/file/Map/MARZ_01.pdf (accessed on 29 March 2024).
- Vardanyan, Z.H.; Ktrakyan, S.A.; Zaroyan, G.M. Green stand distribuition in different administrative districts and microclimatic zones of Yerevan. Biol. J. Armen. 2019, 71, 79–84. (In Armenian) [Google Scholar]
- Nersisyan, G.; Studying Indicator Parameters of Ecological Tolerance of Trees under Conditions of the City of Yerevan. World Forum on Urban Forests. Changing the Nature of Cities: The Role of Urban Forestry for a Green, Healthier and Happier Future. 28 November to 1 December, Mantua, Italy. 2018, p. 56. Available online: https://www.wfuf2018.com/en-ww/parallel-session-2-the-present-1.aspxG (accessed on 29 March 2024).
- Kishchenko, I.T. Assessment of deciduous trees introduction prospect in the taiga zone (Karelia). Arct. Environ. Res. 2019, 19, 87–92. [Google Scholar] [CrossRef]
- Alexandrova, M.S.; Bulygin, N.E.; Voroshilov, V.N.; Karpisonova, R.A.; Plotnikova, L.S. Metodika Fenologicheskikh Nablyudeniy v Botanicheskikh Sadakh SSSR [Methods of Phenological Observations in the Botanical Gardens of the USSR]; Nauka Publisher: Moscow, Russia, 1975; 27p. (In Russian) [Google Scholar]
- Rusanov, F.N. Principles and methods for studying collections of introduced living things plants in botanical gardens. Bull. GBS 1976, 100, 26–29. [Google Scholar]
- Nekrasov, V.I. Current Issues in the Development of the Theory of Plant Acclimatization; Nauka: Moscow, Russia, 1980; 102p. [Google Scholar]
- Fayvush, G.; Vardanyan, Z.; Aleksanyan, A. Invasiveness Risk Assessment of Woody Plants of Armenia. Thaiszia 2018, 28, 81–91. [Google Scholar]
- Street Tree Manual. City of Charleston, South Carolina 15 April 2021, Department of Parks. 2021. Available online: https://www.charleston-sc.gov/DocumentCenter/View/29378/Street-Tree-Manual-04152021?bidId= (accessed on 29 March 2024).
- Street Tree Manual. The Seattle Department of Transportation. 2014. Available online: https://www.seattle.gov/documents/departments/sdot/about/documentlibrary/streettreemanualweb.pdf (accessed on 29 March 2024).
- Melkonyan, G.A. Mercury Pollution Issue in Major Cities of the Republic of Armenia. Ph.D. Dissertation, Yerevan State University, Yerevan, Armenia, 2023. [Google Scholar]
- Sargsyan, K.S. The green circle of Yerevan city. In History of Establishment and the Ways of Reconstruction; Asoghik: Yerevan, Armenia, 2007; 160p. [Google Scholar]
- Annotated Catalog of Trees and Shrubs of Botanical Gardens and Arboretums of the Armenian SSR. Bulletin. Bot. Garden of the Academy of Sciences of the Armenian SSR. 27; Institute of Botany of National Academy of Sciences of Armenia: Yerevan, Armenia, 1985; 164p. (In Russian)
- Gabrielyan, E.; Fragman-Sapir, O.; Oganezova, G.; Sargsyan, M.; Nersesyan, A.; Aghababyan, M.; Tamanyan, K. Green Armenia; “Limush”(WWF-Armenia and Armenian Botanical Society NGO): Yerevan, Armenia, 2016; 352p. [Google Scholar]
- Fayvush, G. Climate change impacts: Vulnerability assessment and adaptation. In Third National Communication on Climate Change under the United Nations Framework Convention on Climate Change; Lusabats: Yerevan, Armenia, 2015; pp. 51–87. [Google Scholar]
- Armenian 4th National Communication on Climate Change 2020. Under the United Nations Framework Convention. Available online: http://env.am/storage/files/fnc-eng.pdf (accessed on 29 March 2024).
- Armenian 3rd National Communication on Climate Change 2015. Under the United Nations Framework Convention. Available online: http://env.am/storage/files/1armenias-tnc-2015-eng.pdf (accessed on 29 March 2024).
- Bulletin of Atmospheric Air Pollution in the Territory of the Republic of Armenia in 2020. Available online: http://armmonitoring.am/public/admin/ckfinder/userfiles/files/ampopag/Odi%20Obzor%202020.pdf (accessed on 29 March 2024).
- Health Statistical Yearbook. National Institute of Health after Named after Academician S. Avdalbekyan; Ministry of Health of Armenia: Yerevan, Armenia, 2017.
- Health Statistical Yearbook. National Institute of Health after Named after Academician S. Avdalbekyan; Ministry of Health of Armenia: Yerevan, Armenia, 2018.
- Health Statistical Yearbook. National Institute of Health after named after academician S. Avdalbekyan (nih.am). 2019. Available online: https://nih.am/assets/pdf/atvk/7757ef19033d47f82bcdf271b94ef4e2.pdf (accessed on 29 March 2024).
- Saghatelyan, A.K.; Arevshatyan, S.H.; Sahakyan, L.V. Ecological-geochemical assessment of heavy metal pollution of the territory of Yerevan. Electron. J. Nat. Sci. 2003, 1, 36–41. [Google Scholar]
- Yang, Y.; Zhang, X.; Korenaga, T.; Higuchi, K. Determination of passive-sampled sulfur dioxide in ambient air as sulfate ion by flow injection analysis with an in-line reaction column. Talanta 2007, 45, 445–450. [Google Scholar] [CrossRef]
- Christie, S.; Scorsone, E.; Persaud, K.; Kvasnik, F. Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sens. Actuators B 2003, 90, 163–169. [Google Scholar] [CrossRef]
- Eipel, C.; Jeroschewski, P.; Steinke, I. Determination of ozone in ambient air with a chemiluminescence reagent film detector. Anal. Chim. Acta 2003, 491, 145–153. [Google Scholar] [CrossRef]
- Saghatelyan, A.; Sahakyan, L.; Belyaeva, O. Geochemistry of atmospheric dust on the territory of the city of Yerevan. Chem. J. Mold. 2012, 7, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Tepanosyan, G.; Baldacchini, C.; Sahakyan, L. Revealing Soil and Tree Leaves Deposited Particulate Matter PTE Relationship and Potential Sources in Urban Environment. Int. J. Environ. Res. Public Health 2021, 18, 10412. [Google Scholar] [CrossRef] [PubMed]
- Yerevan Green Action Plan. 2017. Available online: https://www.yerevan.am/en/yerevan-green-city-action-plan (accessed on 29 March 2024).
- Health System Statistical Yearbook. National Institute of Health after Named after Academician S. Avdalbekyan; Ministry of Health of Armenia: Yerevan, Armenia, 2020.
- NSSRA. NSSRA: National Statistical Service of Republic of Armenia. 2018. Available online: http://armstat.am/en/ (accessed on 13 March 2018).
- Elbakidze, M.; Dawson, L.; Kraft van Ermel, L.E.; Mikusiński, G.; Hedblom, M.; Korohoda, N.; Kruhlov, I.; Smaliychuk, A.; Kurdadze, T.; Ugrekhelidze, K.; et al. Understanding people’s interactions with urban greenspace: Case studies in Eastern Europe. Urban For. Urban Green. 2023, 89, 128117. [Google Scholar] [CrossRef]
Planting Species | Years | |||
---|---|---|---|---|
2019 | 2020 | 2021 | 2022 | |
Trees | 15,492 | 2686 | 7590 | 9140 |
Shrubs | 5000 | 212,682 | 109,345 | 133,911 |
Flowers | 1,000,000 | 290,000 | 53,000 | 277,956 |
Average Annual Temperature, °C | Precipitation, mm | ||||||
---|---|---|---|---|---|---|---|
1961–1990 | 2040 | 2070 | 2100 | 1961–1990 | 2040 | 2070 | 2100 |
10.8 | 12.4 | 14.1 | 15.5 | 343 | 332 | 322 | 313 |
8.4 | 10.0 | 17.4 | 20.2 | 502 | 491 | 481 | 472 |
Winter | |||||||
−0.2 | 1.3 | 2.6 | 4.1 | 66 | 64 | 55 | 55 |
−2.6 | −1.1 | 0.2 | 1.7 | 97 | 94 | 80 | 80 |
Spring | |||||||
9.7 | 11.3 | 12.1 | 13.6 | 122 | 115 | 105 | 114 |
7.3 | 8.9 | 9.7 | 11.2 | 179 | 168 | 155 | 166 |
Summer | |||||||
21.0 | 23.0 | 24.4 | 27.0 | 86 | 75 | 74 | 76 |
18.6 | 20.6 | 22.0 | 24.6 | 125 | 110 | 109 | 111 |
Autumn | |||||||
12.5 | 14.3 | 15.7 | 17.1 | 69 | 78 | 79 | 70 |
10.1 | 11.9 | 13.3 | 14.7 | 101 | 115 | 116 | 102 |
Pollutants | Descriptor | Year | MAC | Tendency | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||||
PM | Mean annual concentration | 95 | 143 | 110 | 128 | 117 | 172 | 147 | 150 | 11.7 |
Sample quantity | 2356 | 2401 | 1711 | 1729 | 1542 | 1755 | 1803 | - | ||
Sulfur dioxide | Mean annual concentration | 28 | 29 | 28 | 18 | 13 | 170 | 220 | 50 | −1.3 |
Sample quantity | 2358 | 2428 | 1764 | 1757 | 1557 | 1769 | 1819 | - | ||
Nitrogen dioxide | Mean annual concentration | 23 | 22 | 20 | 15 | 32 | 27 | 29 | 40 | 3.0 |
Sample quantity | 2393 | 2403 | 1762 | 1751 | 1556 | 1768 | 1805 | - | ||
Ozone near the ground | Mean annual concentration | 5 | 8 | 7 | 6 | 4 | 5 | 6 | 30 | −0.1 |
Sample quantity | 2402 | 2394 | 1763 | 1738 | 1536 | 1766 | 1660 | - |
Death Cause | 2017 | 2018 | 2019 | |
---|---|---|---|---|
0–19-year-old children (male) | The death rate of children due to separate conditions in the perinatal period | 26 | 26 | 19 |
Death rate of children having congenital malformations and chromosome disorders | 12 | 6 | 7 | |
0–19-year-old children (female) | Death rate of children due to separate conditions in the perinatal period | 30 | 18 | 15 |
Death rate of children having congenital malformations and chromosome disorders | 11 | 9 | 4 | |
20> years old (male) | Diseases of the blood circulatory system | 2285 | 2232 | 2275 |
Malignant tumors | 1071 | 983 | 1008 | |
Ischemic heart disease, chronic and other types | 1050 | 1230 | 1287 |
Administrative District | Total Area (Hectare) | Population | Green Areas of General Use, Yards, ha | Green Areas Per Capita, m2 |
---|---|---|---|---|
Achapnyak | 2582 | 110,500 | 80.06 | 7.3 |
Avan | 812 | 53,100 | 46.66 | 8.78 |
Arabkir | 1325 | 115,200 | 59 | 5,0 |
Davtashen | 652 | 43,000 | 49.32 | 11.68 |
Erebuni | 4850 | 130,000 | 32.9 | 2.6 |
Kentron | 1335 | 126,200 | 160.28 | 12.6 |
Malatia-Sebastia | 2516 | 140,600 | 123.83 | 9.7 |
Nor Nork | 1410 | 134,400 | 130.29 | 10.06 |
Nork-Marash | 476 | 11,900 | 4.3 | 3.8 |
Nubarashen | 1724 | 10,200 | 7.56 | 7.79 |
Shengavit | 4060 | 141,900 | 127.33 | 9.27 |
Qanaqer-Zeytun | 773 | 74,900 | 65.33 | 8.78 |
Total | 22,500 | 1,080,311 | 882.99 | 8.11 |
Species | Lifestyle * | Ecological Sustainability | Use According to Landscaping Type | Degree of Tree Ornamentality | Decoration Level | Drought Resistance | Moisture Resistant | Disease and Pest Resistance | |
---|---|---|---|---|---|---|---|---|---|
N/N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | Spiraea x vanhouttei (Briot) Zab. | Sh.d. | Stable | Solitary, street planting, groups, living fence | 34 | High | + | Stable | |
2 | Populus alba L. | T.d. | Stable | Solitary, street planting | 28 | Average | + | Stable | |
3 | Juniperus sabina L. | Sh.c. | Stable | Solitary, groups | 23 | Very high | + | Stable | |
4 | Juniperus virginiana L. | T.c. | Stable | Solitary, street planting, groups | 27 | Very high | + | Stable | |
5 | Cotinus coggygria Scop. | T.d. | Stable | Solitary, groups | 37 | Very high | + | Stable | |
6 | Picea pungens Engelm. “Glauca” | T.c. | Stable | Solitary, street planting, groups | 26 | Very high | + | Stable | |
7 | Ulmus minor L. | T.d. | Stable | Solitary, street planting | 29 | Average | + | Low | |
8 | Morus alba L. | T.d. | Stable | Solitary, street planting | 29 | Average | + | Stable | |
9 | Acer pseudoplaytanus L. | T.d. | Average | Solitary, street planting | 29 | Average | + | Average | |
10 | Acer negundo L. | T.d. | Average | Solitary, street planting | 29 | Average | + | Average | |
11 | Acer platananoides L. | T.d. | Average | Solitary, street planting, groups | 29 | Average | + | Average | |
12 | Thuja occidentalis L. “Fastigiata” | T.c. | Average | Solitary, street planting, groups | 26 | Very high | + | Average | |
13 | Quercus macranthera L. | T.d. | Stable | Solitary, street planting, groups | 28 | Average | + | Low | |
14 | Campsis radicans (L.) Seem. | L.d. | Stable | Vertical landscaping | 34 | High | + | Average | |
15 | Catalpa ovata G. Don | T.d. | Average | Solitary, street planting, groups | 34 | High | + | Average | |
16 | Koelreuteria paniculata L. | T.d. | Stable | Solitary, street planting, groups | 37 | Very high | + | Stable | |
17 | Biota orientalis (L.) Endl. | T.c. | Stable | Solitary, street planting, groups | 23 | Very high | + | Stable | |
18 | Ligustrum vulgare L. | Sh.d. | Stable | Street planting, living fence | 33 | High | + | Stable | |
19 | Berberis vulgaris L. | Sh.d. | Stable | groups | 32 | High | + | Stable | |
20 | Parthenocissus quinquefolia (L.) Planch. | L.d. | Stable | Vertical landscaping | 35 | High | + | Stable | |
21 | Fraxinus lanceolata L. | T.d. | Stable | Solitary, street planting | 29 | Average | + | Average | |
22 | Fraxinus pennsylvanica L. | T.d. | Stable | Solitary, street planting, groups | 29 | Average | + | Average | |
23 | Fraxinus excelsior L. | T.d. | Stable | Solitary, street planting, groups | 29 | Average | + | Average | |
24 | Hibiscus syriacus L. | Sh.d. | Stable | Solitary, street planting, groups | 33 | High | + | Average | |
25 | Aesculus hippocastanum L. | T.d. | Average | Solitary, street planting | 35 | Very high | + | Stable | |
26 | Salix alba L. var. vitelliana “Pendula” | T.d. | Stable | Solitary, street planting, groups | 36 | Very high | + | Average | |
Continouation of table on the next page | |||||||||
N/N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
27 | Robinia pseudoacacia L. | T.d. | Stable | Solitary, street planting, groups | 36 | Very high | + | Stable | |
28 | Robinia pseudoacacia L. “Compacta” | T.d. | Stable | Solitary, street planting, groups | 36 | Very high | + | Stable | |
29 | Sophora japonica L. | T.d. | Stable | Solitary, street planting, groups | 35 | High | + | Average | |
30 | Platanus orientalis L. | T.d. | Stable | Solitary, street planting, groups | 32 | High | + | Average | |
31 | Platanus acerofolia L. | T.d. | Stable | Solitary, street planting, groups | 32 | High | + | Average | |
32 | Philadelphus caucasicus Koehme | Sh.d. | Stable | Solitary, groups, living fence | 36 | Very high | + | Average | |
33 | Buxus sempervirens L. | S.ev. | Stable | Street planting, groups, living fence | 23 | Very low | + | Average | |
34 | Forsythia intermedia Zab. | Sh.d. | Stable | Solitary, groups, living fence | 33 | High | + | Average |
N | Species | |||
---|---|---|---|---|
Streets | Parks | Shrubs | Lianas | |
1 | Cotinus coggygria Scop. | Cotinus coggygria Scop. | Ligustrum vulgare L. | Parthenocissus quinquefolia (L.) Planch. |
2 | Koelreuteria paniculata L. | Koelreuteria paniculata L. | Spiraea vanhouttei (Briot) Zab. | Campsis radicans (L.) Seem. |
3 | Fraxinus lanceolata L. | Fraxinus lanceolata L. | Spiraea japonica L. | Wisteria sinensis (Sims) Sweet |
4 | Fraxinus pennsylvanica L. | Fraxinus pennsylvanica L. | Hibiscus syriacus L. | Dens du Feu |
5 | Fraxinus excelsior L. | Fraxinus excelsior L. | Philadelphus caucasicus Koehme | Madame Plantier |
6 | Robinia pseudoacacia L. “Compacta” | Cercis Canadensis L. | Buxus sempervirens L. | Hedera helix L. |
7 | Sophora japonica L. | Aesculus hippocastanum L. | Forsythia intermedia Zab. | Vitis amurensis Rupr. |
8 | Platanus orientalis L. | Platanus orientalis L. | Symphoricarpos albus (L.) Blake | Lonicera caprifolium L. |
9 | Platanus acerofolia L. | Platanus acerofolia L. | Berberis vulgaris L. | Lonicera flava Sims |
10 | Aesculus hippocastanum L. | Juniperus sabina L. | Weigela florida (Bge.)A. DC. | |
11 | Juniperus virginiana L. | Deutzia scabra Thunb. | ||
12 | Picea pungens Engelm. “Glauca” | Chaenomeles japonica (Thunb.) Lindl. Ex Spach | ||
13 | Catalpa ovata G. Don | Berberis vulgaris L. | ||
14 | Biota orientalis (L.) Endl. | Berberis vulgaris L. “Atropurpurea” | ||
15 | Salix alba L. var. vitelliana “Pendula” | Viburnum opulus L. “Roseum” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardanyan, Z.; Nersisyan, G.; Przybysz, A.; Elbakidze, M.; Sayadyan, H.; Grigoryan, M.; Ktrakyan, S.; Avetisyan, G.; Muradyan, N. Improvement in the Adaptation and Resilience of the Green Areas of Yerevan City to Climate–Ecological Challenges. Atmosphere 2024, 15, 473. https://doi.org/10.3390/atmos15040473
Vardanyan Z, Nersisyan G, Przybysz A, Elbakidze M, Sayadyan H, Grigoryan M, Ktrakyan S, Avetisyan G, Muradyan N. Improvement in the Adaptation and Resilience of the Green Areas of Yerevan City to Climate–Ecological Challenges. Atmosphere. 2024; 15(4):473. https://doi.org/10.3390/atmos15040473
Chicago/Turabian StyleVardanyan, Zhirayr, Gayane Nersisyan, Arkadiusz Przybysz, Marine Elbakidze, Hovik Sayadyan, Manik Grigoryan, Sergey Ktrakyan, Gorik Avetisyan, and Nelli Muradyan. 2024. "Improvement in the Adaptation and Resilience of the Green Areas of Yerevan City to Climate–Ecological Challenges" Atmosphere 15, no. 4: 473. https://doi.org/10.3390/atmos15040473
APA StyleVardanyan, Z., Nersisyan, G., Przybysz, A., Elbakidze, M., Sayadyan, H., Grigoryan, M., Ktrakyan, S., Avetisyan, G., & Muradyan, N. (2024). Improvement in the Adaptation and Resilience of the Green Areas of Yerevan City to Climate–Ecological Challenges. Atmosphere, 15(4), 473. https://doi.org/10.3390/atmos15040473