A Numerical Study of Clear-Air Turbulence over North China on 6 June 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation of Turbulence Encounters
2.2. Configuration of WRF Model
3. Results
3.1. Verification of Numerical Simulations
3.2. Model Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chambers, E. Clear air turbulence and civil jet operations. Aeronaut. J. 1955, 59, 613–628. [Google Scholar] [CrossRef]
- Lester, P.F. Turbulence: A New Perspective for Pilots; Jeppesen Sanderson: Englewood, CO, USA, 1993; p. 212. [Google Scholar]
- Koch, S.E.; Jamison, B.D.; Lu, C.G.; Smith, T.L.; Tollerud, E.I.; Girz, C.; Wang, N.; Lane, T.P.; Shapiro, M.A.; Parrish, D.D.; et al. Turbulence and gravity waves within an upper-level front. J. Atmos. Sci. 2005, 62, 3885–3908. [Google Scholar] [CrossRef]
- Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.; Gharabaghi, B.; et al. A Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [Google Scholar] [CrossRef]
- Williams, P.D.; Joshi, M.M. Intensification of winter transatlantic aviation turbulence in response to climate change. Nat. Clim. Chang. 2013, 3, 644–648. [Google Scholar] [CrossRef]
- Williams, P.D. Increased Light, Moderate, and Severe Clear-Air Turbulence in Response to Climate Change. Adv. Atmos. Sci. 2017, 34, 576–586. [Google Scholar] [CrossRef]
- Storer, L.N.; Williams, P.D.; Joshi, M.M. Global Response of Clear-Air Turbulence to Climate Change. Geophys. Res. Lett. 2017, 44, 9976–9984. [Google Scholar] [CrossRef]
- Al-Gazzi, E.K.; Ali, E.H.; Mohammed, A.J. Performances Study of PSK and ASK Modulation Technique under Atmospheric Turbulence in FSO Communication System. Eng. Technol. J. 2024, 42, 276–287. [Google Scholar] [CrossRef]
- Dutton, J.A.; Panofsky, H.A. Clear air turbulence: A mystery may be unfolding. Science 1970, 167, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Bacmeister, J.T.; Newman, P.A.; Gary, B.L.; Chan, K.R. An algorithm for forecasting mountain wave–related turbulence in the stratosphere. Weather Forecast. 1994, 9, 241–253. [Google Scholar] [CrossRef]
- Miles, J. Richardson’s criterion for the stability of stratified shear flow. Phys. Fluids 1986, 29, 3470–3471. [Google Scholar] [CrossRef]
- Dutton, M. Probability forecasts of clear-air turbulence based on numerical model output. Meteorol. Mag. 1980, 109, 293–306. [Google Scholar]
- Knox, J.A. Possible mechanisms of clear-air turbulence in strongly anticyclonic flows. Mon. Weather Rev. 1997, 125, 1251–1259. [Google Scholar] [CrossRef]
- Clark, T.L.; Hall, W.D.; Kerr, R.M.; Middleton, D.; Radke, L.; Ralph, F.M.; Neiman, P.J.; Levinson, D. Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. J. Atmos. Sci. 2000, 57, 1105–1131. [Google Scholar] [CrossRef]
- Basse, N.T. Modelling of vortex-induced aviation turbulence. Meteorol. Atmos. Phys. 2020, 132, 401–411. [Google Scholar] [CrossRef]
- Kaplan, M.L.; Huffman, A.W.; Lux, K.M.; Charney, J.J.; Riordan, A.J.; Lin, Y.-L. Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses. Meteorol. Atmos. Phys. 2005, 88, 129–152. [Google Scholar] [CrossRef]
- Kaplan, M.L.; Charney, J.J.; Waight, K.T.; Lux, K.M.; Cetola, J.D.; Huffman, A.W.; Riordan, A.J.; Slusser, S.D.; Kiefer, M.T.; Suffern, P.S.; et al. Characterizing the severe turbulence environments associated with commercial aviation accidents. A real-time turbulence model (RTTM) designed for the operational prediction of hazardous aviation turbulence environments. Meteorol. Atmos. Phys. 2006, 94, 235–270. [Google Scholar] [CrossRef]
- Yang, R.; Ran, L.K.; Zhang, Y.L.; Liu, Y. Analysis and Simulation of the Stratospheric Quasi-zero Wind Layer over Korla, Xinjiang Province, China. Adv. Atmos. Sci. 2019, 36, 1143–1155. [Google Scholar] [CrossRef]
- Andreassen, O.; Wasberg, C.E.; Fritts, D.C.; Isler, J.R. Gravity wave breaking in two and three dimensions: 1. Model description and comparison of two-dimensional evolutions. J. Geophys. Res.-Atmos. 1994, 99, 8095–8108. [Google Scholar]
- Lindzen, R.S. Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown. J. Geophys. Res.-Oceans 1981, 86, 9707–9714. [Google Scholar] [CrossRef]
- Lane, T.P.; Sharman, R.D. Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett. 2006, 33, L23813. [Google Scholar] [CrossRef]
- Jiang, Q.F.; Doyle, J.D. Gravity wave breaking over the central Alps: Role of complex terrain. J. Atmos. Sci. 2004, 61, 2249–2266. [Google Scholar] [CrossRef]
- Doyle, J.D.; Shapiro, M.A.; Jiang, Q.F.; Bartels, D.L. Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci. 2005, 62, 3106–3126. [Google Scholar] [CrossRef]
- Lane, T.P.; Doyle, J.D.; Sharman, R.D.; Shapiro, M.A.; Watson, C.D. Statistics and Dynamics of Aircraft Encounters of Turbulence over Greenland. Mon. Weather Rev. 2009, 137, 2687–2702. [Google Scholar] [CrossRef]
- Lindzen, R.S. Thermally driven diurnal tide in the atmosphere. Q. J. R. Meteorol. Soc. 1967, 93, 18–42. [Google Scholar] [CrossRef]
- Prusa, J.M.; Smolarkiewicz, P.K.; Garcia, R.R. Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing. J. Atmos. Sci. 1996, 53, 2186–2216. [Google Scholar] [CrossRef]
- VanZandt, T.E.; Fritts, D.C. A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys. 1989, 130, 399–420. [Google Scholar] [CrossRef]
- Smith, R.B.; Skubis, S.; Doyle, J.D.; Broad, A.S.; Kiemle, C.; Volkert, H. Mountain waves over Mont Blanc: Influence of a stagnant boundary layer. J. Atmos. Sci. 2002, 59, 2073–2092. [Google Scholar] [CrossRef]
- Smith, R.B. The influence of mountains on the atmosphere. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 21, pp. 87–230. [Google Scholar]
- Lilly, D.K. A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci. 1978, 35, 59–77. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.D.; Huang, C.M.; Huang, K.M.; Gong, Y.; Gan, Q.; Zhang, Y.H. Latitudinal and Topographical Variabilities of Free Atmospheric Turbulence From High-Resolution Radiosonde Data Sets. J. Geophys. Res.-Atmos. 2019, 124, 4283–4298. [Google Scholar] [CrossRef]
- Thorpe, S.A.; Deacon, G.E.R. Turbulence and mixing in a Scottish Loch. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Sci. 1977, 286, 125–181. [Google Scholar]
- Geller, M.A.; Love, P.T.; Wang, L. A Climatology of Unstable Layers in the Troposphere and Lower Stratosphere: Some Early Results. Mon. Weather Rev. 2021, 149, 1233–1245. [Google Scholar] [CrossRef]
- Ko, H.-C.; Chun, H.-Y. Potential sources of atmospheric turbulence estimated using the Thorpe method and operational radiosonde data in the United States. Atmos. Res. 2022, 265, 105891. [Google Scholar] [CrossRef]
- He, J.Y.; Chan, P.W.; Li, Q.S.; Li, L.; Zhang, L.; Yang, H.L. Observations of wind and turbulence structures of Super Typhoons Hato and Mangkhut over land from a 356 m high meteorological tower. Atmos. Res. 2022, 265, 105910. [Google Scholar] [CrossRef]
- Singh, J.; Zhang, Y.; Yuan, H.; Cao, S. Numerical generation of inflow turbulence by cell perturbation technique in WRF simulation. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104395. [Google Scholar] [CrossRef]
- Wang, S.; Song, Z.; Ma, W.; Shu, Q.; Qiao, F. Mesoscale and submesoscale turbulence in the Northwest Pacific Ocean revealed by numerical simulations. Deep Sea Res. Pt. II 2022, 206, 105221. [Google Scholar] [CrossRef]
- Jaeger, E.B.; Sprenger, M. A Northern Hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 reanalysis data. J. Geophys. Res.-Atmos. 2007, 112, D20106. [Google Scholar] [CrossRef]
- Kim, J.-H.; Chun, H.-Y. A Numerical Study of Clear-Air Turbulence (CAT) Encounters over South Korea on 2 April 2007. J. Appl. Meteorol. Clim. 2010, 49, 2381–2403. [Google Scholar] [CrossRef]
- Lee, D.-B.; Chun, H.-Y. A Numerical Study of Aviation Turbulence Encountered on 13 February 2013 over the Yellow Sea between China and the Korean Peninsula. J. Appl. Meteorol. Clim. 2018, 57, 1043–1060. [Google Scholar] [CrossRef]
- Kaplan, M.L.; Huffman, A.W.; Lux, K.M.; Cetola, J.D.; Charney, J.J.; Riordan, A.J.; Lin, Y.-L.; Waight, K.T., III. Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 2: Hydrostatic mesoscale numerical simulations of supergradient wind flow and streamwise ageostrophic frontogenesis. Meteorol. Atmos. Phys. 2005, 88, 153–173. [Google Scholar] [CrossRef]
- Hu, B.Y.; Hui, P.H.; Ding, J.F.; Tang, J.P. Clear-Air Turbulence (CAT) Encounters on 13 November 2019 over Central and Eastern China: Numerical Simulation and Generation Mechanism. Weather Forecast. 2023, 38, 1643–1660. [Google Scholar] [CrossRef]
Event | Time (UTC) | Location | Flight Level (km) | Turbulence Intensity |
---|---|---|---|---|
1 | 0050 | Wei County (36.25° N, 114.93° E) | 8.9 | Severe |
2 | 0210 | Changzhi (36.47° N, 112.86° E) | 9.1 | Severe |
3 | 0245 | Jinan (36.86° N, 117.20° E) | 9.5 | Severe |
4 | 0315 | Wei County (36.25° N, 114.93° E) | 8.1 | Severe |
No. | VWS(10−2 s−1) | Ri | ||||
---|---|---|---|---|---|---|
D1 | D2 | D3 | D1 | D2 | D3 | |
1 | 2.73 | 2.43 | 2.42 | 0.36 | 0.45 | 0.48 |
2 | 2.31 | 2.44 | 2.45 | 0.31 | 0.24 | 0.24 |
3 | 1.47 | 1.82 | 1.90 | 1.31 | 1.00 | 0.88 |
4 | 2.62 | 2.55 | 2.55 | 0.28 | 0.28 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Liu, H.; Li, K.; Yuan, S. A Numerical Study of Clear-Air Turbulence over North China on 6 June 2017. Atmosphere 2024, 15, 407. https://doi.org/10.3390/atmos15040407
Yang R, Liu H, Li K, Yuan S. A Numerical Study of Clear-Air Turbulence over North China on 6 June 2017. Atmosphere. 2024; 15(4):407. https://doi.org/10.3390/atmos15040407
Chicago/Turabian StyleYang, Rui, Haiwen Liu, Kenan Li, and Shuai Yuan. 2024. "A Numerical Study of Clear-Air Turbulence over North China on 6 June 2017" Atmosphere 15, no. 4: 407. https://doi.org/10.3390/atmos15040407
APA StyleYang, R., Liu, H., Li, K., & Yuan, S. (2024). A Numerical Study of Clear-Air Turbulence over North China on 6 June 2017. Atmosphere, 15(4), 407. https://doi.org/10.3390/atmos15040407