The PM2.5-Bound Polycyclic Aromatic Hydrocarbon Behavior in Indoor and Outdoor Environments, Part III: Role of Environmental Settings in Elevating Indoor Concentrations of Benzo(a)pyrene
Abstract
1. Introduction
2. Methodology
2.1. Data
2.2. Data Analysis
3. Results and Discussion
3.1. Environmental Settings
3.2. Setting Associated with Elevated Indoor B[a]P Concentrations—E1
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Wang, Z.; Wei, Y.; Yang, S.; Yao, S.; Yang, B.; Yang, L. Characteristics, sources, and health risks of PAHs and their derivatives in indoor dust in Zhengzhou. Atmos. Pollut. Res. 2024, 15, 102246. [Google Scholar] [CrossRef]
- Ghetu, C.C.; Rohlman, D.; Smith, B.W.; Scott, R.P.; Adams, K.A.; Hoffman, P.D.; Anderson, K.A. Wildfire impact on indoor and outdoor PAH air quality. Environ. Sci. Technol. 2022, 56, 10042–10052. [Google Scholar] [CrossRef] [PubMed]
- WHO. Human Health Effects of Polycyclic Aromatic Hydrocarbons as Ambient Air Pollutants: Report of the Working Group on Polycyclic Aromatic Hydrocarbons of the Joint Task Force on the Health Aspects of Air Pollution; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Li, C.; Bai, L.; Wang, H.; Li, G.; Cui, Y. Characteristics of indoor and outdoor Polycyclic Aromatic Hydrocarbons (PAHs) pollution in TSP in rural Northeast China: A case study of heating and non-heating periods. J. Environ. Health Sci. Eng. 2022, 20, 899–913. [Google Scholar] [CrossRef] [PubMed]
- Gruenwald, T.; Seals, B.A.; Knibbs, L.D.; Hosgood, H.D. Population attributable fraction of gas stoves and childhood asthma in the United States. Int. J. Environ. Res. Public Health 2023, 20, 75. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor exposure to selected air pollutants in the home environment: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef]
- Bacanin, N.; Perisic, M.; Jovanovic, G.; Damaševičius, R.; Stanisic, S.; Simic, V.; Zivkovic, M.; Stojic, A. The explainable potential of coupling hybridized metaheuristics, XGBoost, and SHAP in revealing toluene behavior in the atmosphere. Sci. Total Environ. 2024, 929, 172195. [Google Scholar] [CrossRef]
- Bezdan, T.; Perišić, M.; Jovanović, G.; Bačanin, N.; Stojić, A. Artificial Intelligence-Based Framework for Analyzing Crises-Caused Air Pollution. In Sinteza 2024—International Scientific Conference on Information Technology, Computer Science, and Data Science; Singidunum University: Beograd, Serbia, 2024; pp. 281–287. [Google Scholar]
- Stojić, A.; Vuković, G.; Perišić, M.; Stanišić, S.; Šoštarić, A. Urban air pollution: An insight into its complex aspects. In A Closer Look at Urban Areas; Nova Science Publishers: New York, NY, USA, 2018. [Google Scholar]
- Stojić, A.; Stanić, N.; Vuković, G.; Stanišić, S.; Perišić, M.; Šoštarić, A.; Lazić, L. Explainable extreme gradient boosting tree-based prediction of toluene, ethylbenzene and xylene wet deposition. Sci. Total Environ. 2019, 653, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Stanišić, S.; Jovanović, G.; Perišić, M.; Herceg Romanić, S.; Milićević, T.; Stojić, A. Explaining the Environmental Fate of PAHs in Indoor and Outdoor Environments by the Use of Artificial Intelligence; Nova Science Publishers: New York, NY, USA, 2022. [Google Scholar]
- Jovanovic, G.; Perisic, M.; Bacanin, N.; Zivkovic, M.; Stanisic, S.; Strumberger, I.; Alimpic, F.; Stojic, A. Potential of coupling metaheuristics-optimized-xgboost and shap in revealing pahs environmental fate. Toxics 2023, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, L.; Jovanovic, G.; Perisic, M.; Alimpic, F.; Stanisic, S.; Bacanin, N.; Zivkovic, M.; Stojic, A. The explainable potential of coupling metaheuristics-optimized-xgboost and shap in revealing vocs’ environmental fate. Atmosphere 2023, 14, 109. [Google Scholar] [CrossRef]
- Stojić, A.; Jovanović, G.; Stanišić, S.; Romanić, S.H.; Šoštarić, A.; Udovičić, V.; Perišić, M.; Milićević, T. The PM2.5-bound polycyclic aromatic hydrocarbon behavior in indoor and outdoor environments, part II: Explainable prediction of benzo [a] pyrene levels. Chemosphere 2022, 289, 133154. [Google Scholar] [CrossRef] [PubMed]
- Stanišić, S.; Perišić, M.; Jovanović, G.; Milićević, T.; Romanić, S.H.; Jovanović, A.; Šoštarić, A.; Udovičić, V.; Stojić, A. The PM2.5-bound polycyclic aromatic hydrocarbon behavior in indoor and outdoor environments, part I: Emission sources. Environ. Res. 2021, 193, 110520. [Google Scholar] [CrossRef] [PubMed]
- SRPS EN 12341:2015; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2,5 Mass Concentration of Suspended Particulate Matter. Available online: https://iss.rs/en/project/show/iss:proj:49389 (accessed on 29 May 2015).
- SRPS EN 14902:2008/AC:2013; Ambient Air—Standard Method for the Measurement of Pb, Cd, As and Ni in the PM10 Fraction of Suspended Particulate Matter. Available online: https://iss.rs/en/project/show/iss:proj:46826 (accessed on 27 August 2013).
- SRPS ISO 12884:2010; Ambient air—Determination of Total (Gas and Particle-Phase) Polycyclic Aromatic Hydrocarbons—Collection on Sorbent-Backed Filters with Gas Chromatographic/Mass Spectrometric Analyses. Available online: https://iss.rs/en/project/show/iss:proj:24983 (accessed on 29 January 2010).
- SRPS EN 14625:2013; Ambient Air—Standard Method for the Measurement of the Concentration of Ozone by Ultraviolet Photometry. Available online: https://iss.rs/en/project/show/iss:proj:40991 (accessed on 31 May 2013).
- SRPS EN 14626:2013; Ambient Air—Standard Method for the Measurement of the Concentration of Carbon Monoxide by Non-Dispersive Infrared Spectroscopy. Available online: https://iss.rs/en/project/show/iss:proj:40993 (accessed on 31 May 2013).
- SRPS EN 14212:2013/AC:2015; Ambient Air—Standard Method for the Measurement of the Concentration of Sulphur Dioxide by Ultraviolet Fluorescence. Available online: https://iss.rs/en/project/show/iss:proj:54201 (accessed on 31 August 2015).
- SRPS EN 14211:2013; Ambient Air—Ambient Air—Standard Method for the Measurement of the Concentration of Nitrogen Dioxide and Nitrogen Monoxide by Chemiluminescence. Available online: https://iss.rs/en/project/show/iss:proj:40985 (accessed on 31 May 2013).
- Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31. Available online: https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html (accessed on 12 November 2024).
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html (accessed on 12 November 2024).
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 118–1232. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Yang, X.S. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178. [Google Scholar]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Erciyes University, Engineering Faculty, Computer Engineering Department: Kayseri, Türkiye, 2005; Volume 200, pp. 1–10. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, M.; Gao, L.; Pan, Q. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Model. 2018, 63, 464–490. [Google Scholar] [CrossRef]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical density-based clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E.A. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Gbeddy, G.; Goonetilleke, A.; Ayoko, G.A.; Egodawatta, P. Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations. Environ. Pollut. 2020, 257, 113510. [Google Scholar] [CrossRef] [PubMed]
Metrics | Gradient Boosting/ Harris Hawks Optimization | Extra Trees/ Sine Cosine Algorithm | XGBoost/ Firefly Algorithm |
---|---|---|---|
Mean absolute error (MAE) | 0.048 | 0.051 | 0.058 |
Mean squared error (MSE) | 0.005 | 0.008 | 0.011 |
Root mean squared error (RMSE) | 0.070 | 0.088 | 0.107 |
Mean absolute percentage error (MAPE) | 0.315 | 0.240 | 0.281 |
Explained variance | 0.986 | 0.979 | 0.969 |
Max error | 0.213 | 0.238 | 0.332 |
r-squared | 0.985 | 0.976 | 0.965 |
Environmental Setting | Mean Impact | Mean Normalized Impact [%] | Mean Absolute Impact | Population Percentage [%] |
---|---|---|---|---|
Unclustered | 0.01 | 2.9 | 0.7 | 27.0 |
E1 | 1.18 | 262.9 | 2.4 | 16.8 |
E2 | −0.10 | −22.8 | 0.5 | 24.7 |
E3 | −0.27 | −59.7 | 0.6 | 11.0 |
E4 | −0.34 | −76.2 | 0.7 | 20.5 |
B[b]Fi | B[k]Fi | I[cd]Pi | B[ghi]Pi | B[a]Ai | Chri | B[a]Po | Flai | Pyri | B[k]Fo | Pyro | B[b]Fo | COo | Pbi | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B[b]Fi | ||||||||||||||
B[k]Fi | 0.98 | |||||||||||||
I[cd]Pi | 0.05 | −0.09 | ||||||||||||
B[ghi]Pi | 0.26 | 0.11 | 0.53 | |||||||||||
B[a]Ai | 0.93 | 0.95 | −0.23 | 0.22 | ||||||||||
Chri | 0.92 | 0.95 | −0.28 | 0.17 | 1 | |||||||||
B[a]Po | −0.54 | −0.58 | 0.17 | −0.18 | −0.75 | −0.73 | ||||||||
Flai | −0.33 | −0.26 | −0.56 | −0.59 | −0.35 | −0.3 | 0.7 | |||||||
Pyri | 0.4 | 0.5 | −0.81 | −0.46 | 0.49 | 0.54 | −0.05 | 0.63 | ||||||
B[k]Fo | −0.71 | −0.72 | −0.01 | −0.3 | −0.83 | −0.81 | 0.96 | 0.76 | −0.02 | |||||
Pyro | 0.37 | 0.45 | −0.25 | −0.67 | 0.2 | 0.24 | 0.24 | 0.56 | 0.66 | 0.16 | ||||
B[b]Fo | −0.74 | −0.82 | 0.51 | 0.08 | −0.92 | −0.93 | 0.82 | 0.24 | −0.59 | 0.81 | −0.23 | |||
COo | 0.82 | 0.86 | −0.42 | −0.12 | 0.79 | 0.82 | −0.24 | 0.25 | 0.84 | −0.35 | 0.67 | −0.72 | ||
Pbi | −0.71 | −0.59 | −0.34 | −0.7 | −0.54 | −0.51 | 0.02 | 0.18 | −0.13 | 0.24 | −0.06 | 0.18 | −0.54 |
B[b]Fi | B[k]Fi | I[cd]Pi | B[ghi]Pi | B[a]Ai | Chri | B[a]Po | Flai | Pyri | B[k]Fo | Pyro | B[b]Fo | COo | Pbi | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B[b]Fi | ||||||||||||||
B[k]Fi | 0.91 | |||||||||||||
I[cd]Pi | 0.41 | 0.46 | ||||||||||||
B[ghi]Pi | −0.08 | −0.13 | 0.77 | |||||||||||
B[a]Ai | 0.99 | 0.94 | 0.39 | −0.12 | ||||||||||
Chri | 0.98 | 0.95 | 0.48 | −0.09 | 0.98 | |||||||||
B[a]Po | 0.59 | 0.45 | −0.09 | −0.09 | 0.62 | 0.44 | ||||||||
Flai | 0.93 | 0.82 | 0.07 | −0.35 | 0.94 | 0.87 | 0.76 | |||||||
Pyri | 0.94 | 0.79 | 0.1 | −0.36 | 0.93 | 0.9 | 0.63 | 0.97 | ||||||
B[k]Fo | 0.57 | 0.63 | 0.12 | −0.01 | 0.65 | 0.48 | 0.87 | 0.66 | 0.48 | |||||
Pyro | 0.92 | 0.86 | 0.05 | −0.44 | 0.94 | 0.89 | 0.65 | 0.98 | 0.97 | 0.6 | ||||
B[b]Fo | 0.22 | 0.12 | −0.44 | −0.25 | 0.27 | 0.06 | 0.9 | 0.49 | 0.33 | 0.76 | 0.4 | |||
COo | 0.97 | 0.85 | 0.22 | −0.21 | 0.97 | 0.92 | 0.73 | 0.99 | 0.97 | 0.65 | 0.97 | 0.42 | ||
Pbi | −0.04 | 0.14 | 0.79 | 0.57 | −0.06 | 0.11 | −0.66 | −0.39 | −0.31 | −0.35 | −0.32 | −0.85 | −0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, G.; Perišić, M.; Bezdan, T.; Stanišić, S.; Radusin, K.; Popović, A.; Stojić, A. The PM2.5-Bound Polycyclic Aromatic Hydrocarbon Behavior in Indoor and Outdoor Environments, Part III: Role of Environmental Settings in Elevating Indoor Concentrations of Benzo(a)pyrene. Atmosphere 2024, 15, 1520. https://doi.org/10.3390/atmos15121520
Jovanović G, Perišić M, Bezdan T, Stanišić S, Radusin K, Popović A, Stojić A. The PM2.5-Bound Polycyclic Aromatic Hydrocarbon Behavior in Indoor and Outdoor Environments, Part III: Role of Environmental Settings in Elevating Indoor Concentrations of Benzo(a)pyrene. Atmosphere. 2024; 15(12):1520. https://doi.org/10.3390/atmos15121520
Chicago/Turabian StyleJovanović, Gordana, Mirjana Perišić, Timea Bezdan, Svetlana Stanišić, Kristina Radusin, Aleksandar Popović, and Andreja Stojić. 2024. "The PM2.5-Bound Polycyclic Aromatic Hydrocarbon Behavior in Indoor and Outdoor Environments, Part III: Role of Environmental Settings in Elevating Indoor Concentrations of Benzo(a)pyrene" Atmosphere 15, no. 12: 1520. https://doi.org/10.3390/atmos15121520
APA StyleJovanović, G., Perišić, M., Bezdan, T., Stanišić, S., Radusin, K., Popović, A., & Stojić, A. (2024). The PM2.5-Bound Polycyclic Aromatic Hydrocarbon Behavior in Indoor and Outdoor Environments, Part III: Role of Environmental Settings in Elevating Indoor Concentrations of Benzo(a)pyrene. Atmosphere, 15(12), 1520. https://doi.org/10.3390/atmos15121520