Children’s Exposure to Volatile Organic Compounds: A Comparative Analysis of Assessments in Households, Schools, and Indoor Swimming Pools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Characteristics of the Sampled Buildings
2.2. VOC Sampling and Laboratorial Analysis
- -
- Homes: for bedrooms, near the beds of children, with samplers being placed at a height similar to the location of the pillow (0.5–1.0 m); and for a second room (typically the living room) in the area where children spend most of their time when they are not at the bedroom, at a height of 0.5–0.9 m;
- -
- Schools: in the classrooms at a height of about 1.0–1.5 m above the floor.
2.3. Statistical Analyses and Study Assumptions
3. Results and Discussion
- i)
- For homes, the levels were consistent with those reported for homes in the UK [37] and Greece [38], but were lower than those observed in other studies, such as Lee et al.’s research on atopic dermatitis patients in Seoul (mean: 648 µg/m3) [39] or the study of Mečiarová et al. involving Slovak households (apartments: 519.7 µg/m3; family houses: 330.2 µg/m3) [40];
- ii)
- For schools, the measured TVOC concentrations were significantly higher than those reported for mechanically ventilated classrooms in Finland and the USA (<50 µg/m3) (<50 µg/m3) [41,42], but the levels were in line with those observed in geographically neighboring countries, as observed in a study conducted in schools in the Mediterranean region of Spain [43];
- iii)
- For swimming pools, although the research on TVOC levels is limited, the concentrations found in this study were substantially higher than those reported for pool areas in similar facilities in Finland [44].
4. Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Prüss-Ustün, A.; Wolf, J.; Corvalán, C.; Bos, R.; Neira, M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical Pollution: A Growing Peril and Potential Catastrophic Risk to Humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef]
- United Nations Sustainable Development Goals|United Nations Development Programme. Available online: https://www.undp.org/sustainable-development-goals (accessed on 23 July 2021).
- Phillips, M.L.; Esmen, N.A.; Hall, T.A.; Lynch, R. Determinants of Exposure to Volatile Organic Compounds in Four Oklahoma Cities. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.D.; Jurvelin, J.; Koistinen, K.; Saarela, K.; Jantunen, M. VOC Source Identification from Personal and Residential Indoor, Outdoor and Workplace Microenvironment Samples in EXPOLIS-Helsinki, Finland. Atmos. Environ. 2001, 35, 4829–4841. [Google Scholar] [CrossRef]
- Adgate, J.L.; Church, T.R.; Ryan, A.D.; Ramachandran, G.; Fredrickson, A.L.; Stock, T.H.; Morandi, M.T.; Sexton, K. Outdoor, Indoor, and Personal Exposure to VOCs in Children. Environ. Health Perspect. 2004, 112, 1386–1392. [Google Scholar] [CrossRef]
- Wallace, L. Indoor Particles: A Review. J. Air Waste Manag. Assoc. 1996, 46, 98–126. [Google Scholar] [CrossRef]
- Steinemann, A. Ten Questions Concerning Air Fresheners and Indoor Built Environments. Build. Environ. 2017, 111, 279–284. [Google Scholar] [CrossRef]
- Salthammer, T.; Bahadir, M. Occurrence, Dynamics and Reactions of Organic Pollutants in the Indoor Environment. Clean 2009, 37, 417–435. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Nazaroff, W.W.; Weschler, C.J.; Williams, J. How Do Indoor Environments Affect Air Pollution Exposure? Environ. Sci. Technol. 2021, 55, 4. [Google Scholar] [CrossRef]
- Gligorovski, S.; Abbatt, J.P.D. An Indoor Chemical Cocktail. Science 2018, 359, 632–633. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2010. [Google Scholar]
- WHO. A Screening Tool for Assessment of Health Risks from Combined Exposure to Multiple Chemicals in Indoor Air in Public Settings for Children: Methodological Approach; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- WHO. Methods for Sampling and Analysis of Chemical Pollutants in Indoor Air; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Goodman, N.B.; Steinemann, A.; Wheeler, A.J.; Paevere, P.J.; Cheng, M.; Brown, S.K. Volatile Organic Compounds within Indoor Environments in Australia. Build. Environ. 2017, 122, 116–125. [Google Scholar] [CrossRef]
- Patelarou, E.; Tzanakis, N.; Kelly, F.J. Exposure to Indoor Pollutants and Wheeze and Asthma Development during Early Childhood. Int. J. Environ. Res. Public Health 2015, 12, 3993–4017. [Google Scholar] [CrossRef] [PubMed]
- Sofuoglu, S.C.; Aslan, G.; Inal, F.; Sofuoglu, A. An Assessment of Indoor Air Concentrations and Health Risks of Volatile Organic Compounds in Three Primary Schools. Int. J. Hyg. Environ. Health 2011, 214, 36–46. [Google Scholar] [CrossRef]
- You, B.; Zhou, W.; Li, J.; Li, Z.; Sun, Y. A Review of Indoor Gaseous Organic Compounds and Human Chemical Exposure: Insights from Real-Time Measurements. Environ. Int. 2022, 170, 107611. [Google Scholar] [CrossRef]
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It’s about Time: A Comparison of Canadian and American Time–Activity Patterns. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef]
- Braun, J.M.; Gennings, C.; Hauser, R.; Webster, T.F. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect. 2016, 124, A6–A9. [Google Scholar] [CrossRef]
- Bopp, S.K.; Barouki, R.; Brack, W.; Dalla Costa, S.; Dorne, J.-L.C.M.; Drakvik, P.E.; Faust, M.; Karjalainen, T.K.; Kephalopoulos, S.; van Klaveren, J.; et al. Current EU Research Activities on Combined Exposure to Multiple Chemicals. Environ. Int. 2018, 120, 544–562. [Google Scholar] [CrossRef]
- Wild, C.P. Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiol. Prev. Biomark. 2005, 14, 1847–1850. [Google Scholar] [CrossRef]
- Szyszkowicz, M. An Approach to Represent a Combined Exposure to Air Pollution. Int. J. Occup. Med. Environ. Health 2015, 28, 823–830. [Google Scholar] [CrossRef]
- WHO. Combined or Multiple Exposure to Health Stressors in Indoor Built Environments; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Ferguson, A.; Solo-Gabriele, H. Children’s Exposure to Environmental Contaminants: An Editorial Reflection of Articles in the IJERPH Special Issue Entitled, “Children’s Exposure to Environmental Contaminants”. Int. J. Environ. Res. Public Health 2016, 13, 1117. [Google Scholar] [CrossRef]
- WHO. Effects of Air Pollution on Children’s Health and Development. A Review of the Evidence; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- WHO. Chemical Pollution of Indoor Air and Its Risk for Children’s Health Supplementary Publication to the Screening Tool for Assessment of Health Risks from Combined Exposure to Multiple Chemicals in Indoor Air in Public Settings for Children; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Gabriel, M.; Paciência, I.; Felgueiras, F.; Cavaleiro Rufo, J.; Castro Mendes, F.; Farraia, M.; Mourão, Z.; Moreira, A.; de Oliveira Fernandes, E. Environmental Quality in Primary Schools and Related Health Effects in Children. An Overview of Assessments Conducted in the Northern Portugal. Energy Build. 2021, 250, 111305. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Felgueiras, F.; Mourão, Z.; Fernandes, E.O. Assessment of the Air Quality in 20 Public Indoor Swimming Pools Located in the Northern Region of Portugal. Environ. Int. 2019, 133, 105274. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.F.; Felgueiras, F.; Batista, R.; Ribeiro, C.; Ramos, E.; Mourão, Z.; de Oliveira Fernandes, E. Indoor Environmental Quality in Households of Families with Infant Twins under 1 Year of Age Living in Porto. Environ. Res. 2021, 198, 110477. [Google Scholar] [CrossRef] [PubMed]
- ISO 16000-1; Indoor Air—Part 1: General Aspects of Sampling Strategy. 2004. Available online: https://www.iso.org/standard/39844.html (accessed on 18 November 2024).
- ISO 16017-2; Indoor, Ambient and Workplace Air—Sampling and Analysis of Volatile Organic Compounds by Sorbent Tube/Thermal Desorption/Capillary Gas Chromatography—Part 2: Diffusive Sampling. 2003. Available online: https://www.iso.org/standard/29195.html (accessed on 18 November 2024).
- ISO 16000-6:2011; Indoor Air—Part 6: Determination of Volatile Organic Compounds in Indoor and Test Chamber Air by Active Sampling on Tenax TA Sorbent, Thermal Desorption and Gas Chromatography Using MS or MS-FID. 2011. Available online: https://www.iso.org/standard/52213.html (accessed on 18 November 2024).
- Portaria n.o 138-G/2021 de 1 de julho. Saúde e Ambiente e Ação Climática, Diário Da República, 1.a Série, N.o 126. 2021. Available online: https://diariodarepublica.pt/dr/detalhe/portaria/138-g-2021-166296490 (accessed on 18 November 2024).
- Indoor Air Quality Database—IEQ Guidelines. Available online: https://ieqguidelines.org/table (accessed on 18 November 2024).
- Shrubsole, C.; Dimitroulopoulou, S.; Foxall, K.; Gadeberg, B.; Doutsi, A. IAQ Guidelines for Selected Volatile Organic Compounds (VOCs) in the UK. Build. Environ. 2019, 165, 106382. [Google Scholar] [CrossRef]
- Stamatelopoulou, A.; Asimakopoulos, D.N.; Maggos, T. Effects of PM, TVOCs and Comfort Parameters on Indoor Air Quality of Residences with Young Children. Build. Environ. 2019, 150, 233–244. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.S.; Park, M.R.; Lee, S.W.; Kim, E.H.; Cho, J.B.; Kim, J.; Han, Y.; Jung, K.; Cheong, H.K.; et al. Relationship Between Indoor Air Pollutant Levels and Residential Environment in Children With Atopic Dermatitis. Allergy Asthma Immunol. Res. 2014, 6, 517–524. [Google Scholar] [CrossRef]
- Mečiarová, L.; Vilčeková, S.; Burdová, E.K.; Kiselák, J. Factors Effecting the Total Volatile Organic Compound (TVOC) Concentrations in Slovak Households. Int. J. Environ. Res. Public Health 2017, 14, 1443. [Google Scholar] [CrossRef]
- Vornanen-Winqvist, C.; Järvi, K.; Andersson, M.A.; Duchaine, C.; Létourneau, V.; Kedves, O.; Kredics, L.; Mikkola, R.; Kurnitski, J.; Salonen, H. Exposure to Indoor Air Contaminants in School Buildings with and without Reported Indoor Air Quality Problems. Environ. Int. 2020, 141, 105781. [Google Scholar] [CrossRef]
- Zhong, L.; Su, F.C.; Batterman, S. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S. Int. J. Environ. Res. Public Health 2017, 14, 100. [Google Scholar] [CrossRef]
- Becerra, J.A.; Lizana, J.; Gil, M.; Barrios-Padura, A.; Blondeau, P.; Chacartegui, R. Identification of Potential Indoor Air Pollutants in Schools. J. Clean. Prod. 2020, 242, 118420. [Google Scholar] [CrossRef]
- Ruokolainen, J.; Hyttinen, M.; Sorvari, J.; Pasanen, P. Exposure of Cleaning Workers to Chemical Agents and Physical Conditions in Swimming Pools and Spas. Air Qual. Atmos. Health 2022, 15, 521–540. [Google Scholar] [CrossRef]
- Rumchev, K.; Brown, H.; Spickett, J. Volatile Organic Compounds: Do They Present a Risk to Our Health? Rev. Environ. Health 2007, 22, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Fromme, H.; Debiak, M.; Sagunski, H.; Röhl, C.; Kraft, M.; Kolossa-Gehring, M. The German Approach to Regulate Indoor Air Contaminants. Int. J. Hyg. Environ. Health 2019, 222, 347–354. [Google Scholar] [CrossRef] [PubMed]
- WHO. Literature Review on Chemical Pollutants in Indoor Air in Public Settings for Children and Overview of Their Health Effects with a Focus on Schools, Kindergartens and Day-Care Centres Supplementary Publication to the Screening Tool for Assessment of Health Risks from Combined Exposure to Multiple Chemicals in Indoor Air in Public Settings for Children; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- European Chemicals Agency Advanced Search for Chemicals—ECHA. Available online: https://echa.europa.eu/pt/advanced-search-for-chemicals?p_p_id=dissadvancedsearch_WAR_disssearchportlet&p_p_lifecycle=0&p_p_col_id=column-1&p_p_col_count=2 (accessed on 22 May 2020).
- United States Environmental Protection Agency Chemistry Dashboard|Lists of Chemicals-EPA. Available online: https://comptox.epa.gov/dashboard/chemical_lists (accessed on 22 May 2020).
- European Chemicals Agency 10 New Substances Added to the Candidate List. Available online: https://echa.europa.eu/pt/-/ten-new-substances-added-to-the-candidate-list (accessed on 3 June 2020).
- European Union. Commission Regulation (EU) 2024/1328 of 16 May 2024 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Octamethylcyclotetrasiloxane (D4), Decamethylcyclopentasiloxane (D5) and Dodecamethylcyclohexasiloxane (D6). 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL_202401328 (accessed on 18 November 2024).
- Companioni-Damas, E.Y.; Santos, F.J.; Galceran, M.T. Linear and Cyclic Methylsiloxanes in Air by Concurrent Solvent Recondensation–Large Volume Injection–Gas Chromatography–Mass Spectrometry. Talanta 2014, 118, 245–252. [Google Scholar] [CrossRef]
- Pieri, F.; Katsoyiannis, A.; Martellini, T.; Hughes, D.; Jones, K.C.; Cincinelli, A. Occurrence of Linear and Cyclic Volatile Methyl Siloxanes in Indoor Air Samples (UK and Italy) and Their Isotopic Characterization. Environ. Int. 2013, 59, 363–371. [Google Scholar] [CrossRef]
- Tran, T.M.; Kannan, K. Occurrence of Cyclic and Linear Siloxanes in Indoor Air from Albany, New York, USA, and Its Implications for Inhalation Exposure. Sci. Total Environ. 2015, 511, 138–144. [Google Scholar] [CrossRef]
- Tran, T.M.; Le, H.T.; Vu, N.D.; Minh Dang, G.H.; Minh, T.B.; Kannan, K. Cyclic and Linear Siloxanes in Indoor Air from Several Northern Cities in Vietnam: Levels, Spatial Distribution and Human Exposure. Chemosphere 2017, 184, 1117–1124. [Google Scholar] [CrossRef]
- Li, K.; Shen, J.; Zhang, X.; Chen, L.; White, S.; Yan, M.; Han, L.; Yang, W.; Wang, X.; Azzi, M. Variations and Characteristics of Particulate Matter, Black Carbon and Volatile Organic Compounds in Primary School Classrooms. J. Clean. Prod. 2020, 252, 119804. [Google Scholar] [CrossRef]
- Sørensen, S.B.; Kristensen, K. Low-Cost Sensor-Based Investigation of CO2 and Volatile Organic Compounds in Classrooms: Exploring Dynamics, Ventilation Effects and Perceived Air Quality Relations. Build. Environ. 2024, 254, 111369. [Google Scholar] [CrossRef]
- Vallecillos, L.; Borrull, A.; Marcé, R.M.; Borrull, F. Presence of Emerging Organic Contaminants and Solvents in Schools Using Passive Sampling. Sci. Total Environ. 2021, 764, 142903. [Google Scholar] [CrossRef]
- Bessonneau, V.; Derbez, M.; Clément, M.; Thomas, O. Determinants of Chlorination By-Products in Indoor Swimming Pools. Int. J. Hyg. Environ. Health 2011, 215, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Tolis, E.I.; Panaras, G.; Bartzis, J.G. A Comprehensive Air Quality Investigation at an Aquatic Centre: Indoor/Outdoor Comparisons. Environ. Sci. Pollut. Res. 2018, 25, 16710–16719. [Google Scholar] [CrossRef] [PubMed]
- Ragnebro, O.; Helmersmo, K.; Fornander, L.; Olsen, R.; Bryngelsson, I.L.; Graff, P.; Westerlund, J. Chloroform Exposure in Air and Water in Swedish Indoor Swimming Pools—Urine as a Biomarker of Occupational Exposure. Ann. Work. Expo. Health 2023, 67, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Afifi, M.Z.; Blatchley, E.R. Seasonal Dynamics of Water and Air Chemistry in an Indoor Chlorinated Swimming Pool. Water Res. 2015, 68, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Csobod, É.; Annesi-Maesani, I.; Carrer, P.; Kephalopoulos, S.; Madureir, J.; Rudnai, P.; de Oliveria Fernandes, E. SINPHONIE. Schools Indoor Pollution and Health: Observatory Network in Europe. Final Report; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
Characteristics | Households (n = 30) | Schools (n = 20) | Swimming Pools (n = 20) | |||
---|---|---|---|---|---|---|
n (%) | Mean (SD) | n (%) | Mean (SD) | n (%) | Mean (SD) | |
Building | ||||||
Period of construction | ||||||
Before 1950 | 1 (3) | 3 (15) | 0 (0) | |||
1950–1980 | 4 (13) | 14 (70) | 2 (20) | |||
1980–2010 | 19 (63) | 3 (15) | 18 (80) | |||
After 2010 | 6 (20) | 0 (0) | 0 (0) | |||
Ventilation | ||||||
Natural | 30 (100) | 19 (95) | 14 (70) | |||
Mechanical | 0 (0) | 1 (5) | 20 (100) | |||
Air fresheners | 15 (50) | 1 (5) | 3 (15) | |||
Indoor plants | 19 (63) | 1 (5) | 4 (20) | |||
Surrounding outdoor pollution sources | ||||||
Traffic-related | 29 (97) | 16 (80) | 20 (100) | |||
Busy road | 6 (20) | 15 (75) | 6 (30) | |||
Highway | 1 (3) | 1 (5) | 2 (10) | |||
Car parking | 26 (87) | 4 (20) | 20 (100) | |||
Gas stations | 1 (3) | 3 (15) | 2 (10) | |||
Others | 16 (53) | 1 (5) | 6 (30) | |||
Cleaning | ||||||
Bleach or detergent with bleach | 23 (77) | 4 (20) | 11 (55) | |||
Spray | 2 (7) | 0 (0) | 0 (0) | |||
Liquid | 22 (73) | 4 (20) | 11 (55) | |||
Detergent with ammonia | 7 (23) | 9 (45) | 1 (5) | |||
Spray | 0 (0) | 8 (40) | 0 (0) | |||
Liquid | 7 (23) | 1 (5) | 1 (5) | |||
Other detergent/cleaning products | 29 (97) | 20 (100) | 16 (80) | |||
Spray | 3 (10) | 0 (0) | 0 (0) | |||
Liquid | 27 (90) | 20 (100) | 16 (80) | |||
Wax/furniture polish | 6 (20) | 3 (15) | 2 (10) | |||
Spray | 0 (0) | n.i. | 0 (0) | |||
Liquid | 6 (20) | n.i. | 2 (10) | |||
Indoor spaces ¥ | ||||||
Floor area (m2) | 19 (9) | 51 (8) | 1161 (556) | |||
Ceiling height (m) | 3 (0) | 3 (0) | 7 (2) | |||
Volume (m3) | 50 (23) | 172 (29) | 8856 (6453) | |||
Interior of the room remodeled, renovated, or painted in the past 12 months | 14 (23) | 14 (20) | 7 (35) | |||
Signs of pathologies | ||||||
Physical | 3 (5) | 31 (44) | 13 (65) | |||
Moisture-related | 1 (2) | 13 (18) * | 18 (90) | |||
Number of occupants | 3 (1) | 21 (3) | 16 (10) |
Households (n = 30) | Schools (n = 20) | Swimming Pools (n = 20) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Mean (SD) a | Max a | n (DF) b | I/O c | Mean (SD) a | Max a | n (DF) b | I/O c | Mean (SD) a | Max a | n (DF) b | I/O c | |
1,2,4-Trimethylbenzene | Indoor | 2.0 (3.6) | 16.9 | 12 (40.0) | 20.0 | 2.3 (3.7) | 16.3 | 16 (80.0) | 4.6 | 0.4 (1.0) | 3.9 | 6 (30.0) | >10 # |
Outdoor | 0.1 (0.8) | 4.1 | 1 (3.4) | 0.5 (1.0) | 3.0 | 5 (25.0) | n.d. | n.d. | n.d. | ||||
1-Methoxy-2-propanol | Indoor | 2.6 (7.7) | 36.7 | 4 (13.3) | >10 # | 13.1 (32.6) | 142.5 | 8 (40.0) | 0.7 | 1.7 (3.2) | 12.6 | 8 (40.0) | 0.6 |
Outdoor | n.d. | n.d. | n.d. | 19.8 (86.7) | 388.0 | 2 (10.0) | 3.0 (13.5) | 60.2 | 1 (5.0) | ||||
2,2,4,4,6,8,8-Heptamethylnonane | Indoor | 4.9 (18.2) | 97.2 | 6 (20.0) | 16.3 | n.d. | n.d. | n.d. | n.a. | 0.8 (1.6) | 4.8 | 4 (20.0) | >10 # |
Outdoor | 0.3 (1.4) | 7.5 | 1 (3.4) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
2-Butoxyethanol | Indoor | n.d. | n.d. | n.d. | n.a. | 8.1 (21.7) | 83.3 | 5 (25.0) | 0.7 | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | 11.7 (51.4) | 229.9 | 2 (10.0) | n.d. | n.d. | n.d. | ||||
2-Ethylhexanol | Indoor | 1.4 (2.7) | 9.1 | 8 (26.7) | 2.8 | 4.0 (4.9) | 19.9 | 15 (75.0) | 1.5 | 1.2 (2.7) | 11.7 | 10 (50.0) | 2.4 |
Outdoor | 0.5 (2.0) | 8.5 | 2 (6.9) | 2.6 (9.8) | 43.8 | 4 (20.0) | 0.5 (1.3) | 4.2 | 3 (15.0) | ||||
2-Methylbutanenitrile | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 6.9 (4.5) | 19.9 | 19 (95.0) | >10 # |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
2-Phenoxyethanol | Indoor | 1.1 (2.5) | 9.8 | 5 (16.7) | 2.8 | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | 0.4 (1.9) | 10.2 | 1 (3.4) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
3-Carene | Indoor | 1.7 (4.7) | 24.3 | 7 (23.3) | >10 # | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
3-Methylbutanenitrile | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 7.5 (5.7) | 26.0 | 19 (95.0) | >10 # |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Acetic acid | Indoor | 3.9 (9.6) | 37.4 | 5 (16.7) | >10 # | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Acetophenone | Indoor | 1.6 (2.1) | 7.6 | 14 (46.7) | 0.5 | 1.1 (1.3) | 3.5 | 10 (50.0) | 0.6 | 0.2 (0.4) | 1.3 | 6 (30.0) | >10 # |
Outdoor | 3.0 (4.4) | 21.7 | 16 (55.2) | 1.8 (2.2) | 7.5 | 10 (50.0) | n.d. | n.d. | n.d. | ||||
Benzaldehyde | Indoor | 4.8 (3.7) | 16.2 | 26 (86.7) | 0.7 | 11.4 (7.2) | 27.7 | 20 (100) | 0.7 | 4.6 (2.7) | 12.8 | 20 (100) | 2.3 |
Outdoor | 7.3 (6.9) | 32.3 | 25 (86.2) | 15.8 (9.5) | 44.3 | 19 (95.0) | 2.0 (1.6) | 5.9 | 16 (80.0) | ||||
Benzene | Indoor | 1.2 (1.1) | 4.6 | 20 (66.7) | 0.7 | 0.9 (0.6) | 2.4 | 20 (100) | 0.8 | 0.5 (0.8) | 3.5 | 9 (45.0) | 1.3 |
Outdoor | 1.7 (1.4) | 5.0 | 22 (75.9) | 1.1 (0.7) | 2.4 | 19 (95.0) | 0.4 (0.8) | 2.7 | 6 (30.0) | ||||
Benzonitrile | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 1.3 (1.6) | 6.3 | 13 (65.0) | >10 # |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Benzyl acetate | Indoor | 0.6 (1.6) | 5.5 | 5 (16.7) | >10 # | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
BHT, butylassatempoted hydroxytoluene | Indoor | n.d. | n.d. | n.d. | n.a. | 0.8 (2.1) | 8.4 | 4 (20.0) | >10 # | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Butanol | Indoor | 1.6 (4.7) | 24.2 | 6 (20.0) | >10 # | 2.0 (2.7) | 7.8 | 9 (45.0) | 6.7 | 0.6 (0.9) | 2.7 | 9 (45.0) | 0.5 |
Outdoor | n.d. | n.d. | n.d. | 0.3 (0.9) | 2.9 | 2 (10.0) | 1.3 (2.8) | 9.6 | 4 (20.0) | ||||
Butyl acetate | Indoor | 3.0 (8.8) | 36.9 | 4 (13.3) | >10 # | n.d. | n.d. | n.d. | n.a. | 2.0 (2.2) | 7.6 | 13 (65.0) | 0.9 |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.3 (4.2) | 13.5 | 7 (35.0) | ||||
Cyclohexanone | Indoor | n.d. | n.d. | n.d. | n.a. | 1.0 (3.0) | 10.8 | 2 (10.0) | >10 # | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Decamethylcyclopentasiloxane | Indoor | 63.5 (128.2) | 611.5 | 11 (36.7) | 14.4 | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | 4.4 (23.6) | 127.3 | 1 (3.4) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Decanal | Indoor | 1.4 (1.8) | 5.8 | 14 (46.7) | 2.3 | 1.0 (1.3) | 3.3 | 8 (40.0) | 1.4 | 3.1 (1.9) | 6.9 | 19 (95.0) | 0.3 |
Outdoor | 0.6 (1.5) | 5.3 | 5 (17.2) | 0.7 (1.4) | 4.9 | 5 (25.0) | 10.2 (9.0) | 31.1 | 19 (95.0) | ||||
Decane | Indoor | 2.5 (5.5) | 22.1 | 8 (26.7) | 12.5 | 1.7 (2.2) | 8.1 | 10 (50.0) | 5.7 | n.d. | n.d. | n.d. | n.a. |
Outdoor | 0.2 (0.9) | 5.0 | 1 (3.4) | 0.3 (0.9) | 3.1 | 3 (15.0) | n.d. | n.d. | n.d. | ||||
Dichloroacetonitrile | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 8.9 (6.4) | 25.4 | 19 (95.0) | >10 # |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Ethyl acetate | Indoor | 8.6 (23.6) | 114.5 | 11 (36.7) | 86.0 | 25.4 (39.6) | 163.8 | 17 (85.0) | 9.1 | 0.3 (0.6) | 2.6 | 6 (30.0) | 0.5 |
Outdoor | 0.1 (0.6) | 2.9 | 2 (6.9) | 2.8 (5.1) | 21.8 | 9 (45.0) | 0.6 (1.6) | 5.1 | 3 (15.0) | ||||
Ethylbenzene | Indoor | 1.8 (3.2) | 12.9 | 12 (40.0) | 9.0 | 2.7 (4.4) | 19.9 | 17 (85.0) | 3.4 | 1.8 (3.6) | 16.2 | 16 (80.0) | 2.0 |
Outdoor | 0.2 (0.7) | 3.5 | 3 (10.3) | 0.8 (0.9) | 2.4 | 11 (55.0) | 0.9 (1.4) | 4.1 | 7 (35.0) | ||||
Heptane | Indoor | n.d. | n.d. | n.d. | n.a. | 2.0 (2.9) | 9.9 | 9 (45.0) | 6.7 | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | 0.3 (1.0) | 3.4 | 2 (10.0) | n.d. | n.d. | n.d. | ||||
Hexanal | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 0.7 (1.4) | 6.0 | 6 (30.0) | 0.5 |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.4 (2.6) | 8.6 | 5 (25.0) | ||||
Hexane | Indoor | n.d. | n.d. | n.d. | n.a. | 20.5 (77.8) | 346.4 | 3 (15.0) | >10 # | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Hexanoic acid | Indoor | n.d. | n.d. | n.d. | n.a. | 1.1 (2.7) | 10.3 | 4 (20.0) | 11.0 | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | 0.1 (0.4) | 1.8 | 1 (5.0) | n.d. | n.d. | n.d. | ||||
Isobutyronitrile | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 6.1 (7.9) | 36.5 | 18 (90.0) | >10 # |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Limonene | Indoor | 18.2 (22.5) | 90.4 | 26 (86.7) | 20.2 | 23.2 (24.8) | 111.6 | 20 (100) | 16.6 | 1.6 (1.8) | 6.4 | 17 (85.0) | 3.2 |
Outdoor | 0.9 (3.9) | 21.1 | 3 (10.3) | 1.4 (4.8) | 21.6 | 4 (20.0) | 0.5 (1.0) | 3.6 | 4 (20.0) | ||||
m/o/p-Xylenes | Indoor | 15.4 (18.4) | 85.2 | 28 (93.3) | 4.2 | 13.7 (19.6) | 81.1 | 19 (95.0) | 2.5 | 6.4 (10.2) | 45.7 | 19 (95.0) | 1.9 |
Outdoor | 3.7 (4.4) | 21.0 | 22 (75.9) | 5.4 (5.2) | 24.9 | 18 (90.0) | 3.4 (4.3) | 13.7 | 12 (60.0) | ||||
Methylcyclohexane | Indoor | n.d. | n.d. | n.d. | n.a. | 1.1 (1.3) | 3.4 | 10 (50.0) | >10 # | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Naphthalene | Indoor | 0.2 (0.4) | 1.8 | 4 (13.3) | >10 # | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Nonanal | Indoor | 3.4 (3.2) | 9.7 | 18 (60.0) | 5.7 | 4.7 (4.7) | 18.0 | 14 (70.0) | 3.6 | 1.8 (1.3) | 5.1 | 18 (90.0) | 0.2 |
Outdoor | 0.6 (1.5) | 6.8 | 5 (17.2) | 1.3 (2.3) | 9.3 | 7 (35.0) | 7.3 (5.8) | 20.5 | 18 (90.0) | ||||
Nonane | Indoor | 0.7 (2.0) | 7.3 | 3 (10.0) | >10 # | 0.2 (0.5) | 1.7 | 5 (25.0) | >10 # | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Octanal | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 0.4 (0.7) | 2.2 | 7 (35.0) | 0.3 |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.4 (2.0) | 5.6 | 7 (35.0) | ||||
Octane | Indoor | 1.1 (2.9) | 12.0 | 5 (16.7) | 5.5 | 0.8 (1.8) | 5.3 | 4 (20.0) | 4.0 | n.d. | n.d. | n.d. | n.a. |
Outdoor | 0.2 (1.3) | 6.9 | 1 (3.4) | 0.2 (0.8) | 3.6 | 1 (5.0) | n.d. | n.d. | n.d. | ||||
Phenol | Indoor | n.d. | n.d. | n.d. | n.a. | 1.2 (2.0) | 5.8 | 7 (35.0) | 0.5 | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | 2.3 (3.6) | 11.1 | 7 (35.0) | n.d. | n.d. | n.d. | ||||
Phthalic anhydride | Indoor | n.d. | n.d. | n.d. | n.a. | 0.7 (1.4) | 4.9 | 6 (30.0) | 0.8 | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | 0.9 (2.5) | 10.4 | 4 (20.0) | n.d. | n.d. | n.d. | ||||
Styrene | Indoor | 1.0 (3.5) | 18.1 | 7 (23.3) | 10.0 | 0.8 (0.8) | 3.0 | 18 (90.0) | 0.6 | 0.5 (0.7) | 3.1 | 12 (60.0) | 2.5 |
Outdoor | 0.1 (0.2) | 0.8 | 3 (10.3) | 1.4 (4.6) | 20.9 | 15 (75.0) | 0.2 (0.4) | 1.2 | 3 (15.0) | ||||
Tetrachloroethylene | Indoor | 0.3 (1.0) | 3.9 | 4 (13.3) | 3.0 | 0.4 (0.9) | 3.6 | 3 (15.0) | 0.5 | 0.4 (0.7) | 2.2 | 7 (35.0) | 4.0 |
Outdoor | 0.1 (0.5) | 2.8 | 2 (6.9) | 0.8 (3.6) | 16.3 | 1 (5.0) | 0.1 (0.4) | 1.4 | 2 (10.0) | ||||
Tetradecane | Indoor | 0.2 (0.8) | 4.1 | 3 (10.0) | >10 # | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
Tetrahydrofuran | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 1.6 (2.9) | 9.9 | 8 (40.0) | 0.3 |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5.1 (18.7) | 84.0 | 4 (20.0) | ||||
Toluene | Indoor | 15.5 (18.1) | 79.6 | 29 (96.7) | 3.3 | 14.5 (13.7) | 64.7 | 20 (100) | 2.4 | 7.6 (7.8) | 27.8 | 19 (95.0) | 1.4 |
Outdoor | 4.7 (4.3) | 21.7 | 26 (89.7) | 6.1 (7.4) | 36.0 | 19 (95.0) | 5.4 (5.9) | 22.5 | 16 (80.0) | ||||
Undecane | Indoor | 1.3 (4.1) | 19.8 | 4 (13.3) | >10 # | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
α/β-Pinenes | Indoor | 8.6 (9.3) | 42.0 | 25 (83.3) | 14.3 | 1.5 (2.2) | 8.6 | 11 (55.0) | 3.8 | n.d. | n.d. | n.d. | n.a. |
Outdoor | 0.6 (2.8) | 15.1 | 2 (6.9) | 0.4 (1.2) | 3.9 | 3 (15.0) | n.d. | n.d. | n.d. | ||||
TTHM | Indoor | n.d. | n.d. | n.d. | n.a. | n.d. | n.d. | n.d. | n.a. | 95.4 (117.8) | 563.3 | 20 (100) | 63.6 |
Outdoor | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.5 (3.1) | 8.6 | 5 (25.0) | ||||
TVOC | Indoor | 269.3 (177.3) | 791.2 | 30 (100) | 4.4 | 219.9 (112.9) | 466.2 | 20 (100) | 1.8 | 196.0 (141.0) | 655.5 | 20 (100) | 3.0 |
Outdoor | 60.6 (50.9) | 278.4 | 29 (100) | 122.8 (129.5) | 573.5 | 20 (100) | 64.3 (42.4) | 139.0 | 20 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, M.F.; Felgueiras, F.; Feliciano, M. Children’s Exposure to Volatile Organic Compounds: A Comparative Analysis of Assessments in Households, Schools, and Indoor Swimming Pools. Atmosphere 2024, 15, 1471. https://doi.org/10.3390/atmos15121471
Gabriel MF, Felgueiras F, Feliciano M. Children’s Exposure to Volatile Organic Compounds: A Comparative Analysis of Assessments in Households, Schools, and Indoor Swimming Pools. Atmosphere. 2024; 15(12):1471. https://doi.org/10.3390/atmos15121471
Chicago/Turabian StyleGabriel, Marta Fonseca, Fátima Felgueiras, and Manuel Feliciano. 2024. "Children’s Exposure to Volatile Organic Compounds: A Comparative Analysis of Assessments in Households, Schools, and Indoor Swimming Pools" Atmosphere 15, no. 12: 1471. https://doi.org/10.3390/atmos15121471
APA StyleGabriel, M. F., Felgueiras, F., & Feliciano, M. (2024). Children’s Exposure to Volatile Organic Compounds: A Comparative Analysis of Assessments in Households, Schools, and Indoor Swimming Pools. Atmosphere, 15(12), 1471. https://doi.org/10.3390/atmos15121471