Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Chamber
3.2. Experimental Method and Procedure
3.3. Light Sources
3.4. Temperature and Humidity
3.5. Measurement Systems
3.6. SOA Yield
3.7. SOA Losses on Chamber-Wall (Wall Loss)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abaje, I.B.; Bello, Y.; Ahmad, S.A. A review of air quality and concentrations of air pollutants in Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 373–379. [Google Scholar] [CrossRef]
- Mitchell, J.F.B.; Johns, T.C.; Gregory, J.M.; Tett, S.F.B. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 1995, 376, 501–504. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Huang, W.; Ling, Z.; Wang, Z.; Wang, X. Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmos. Res. 2022, 274, 106184. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Fröhlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef]
- Jathar, S.H.; Gordon, T.D.; Hennigan, C.J.; Pye, H.O.; Pouliot, G.; Adams, P.J.; Donahue, N.M.; Robinson, A.L. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States. Proc. Natl Acad. Sci. USA 2014, 111, 10473–10478. [Google Scholar] [CrossRef]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, I.; Alfarra, M.R.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801. [Google Scholar] [CrossRef]
- Srivastava, D.; Vu, T.V.; Tong, S.; Shi, Z.; Harrison, R.M. Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. npj Clim. Atmos. Sci. 2022, 5, 22. [Google Scholar] [CrossRef]
- Chu, B.; Chen, T.; Liu, Y.; Ma, Q.; Mu, Y.; Wang, Y.; Ma, J.; Zhang, P.; Liu, J.; Liu, C.; et al. Application of smog chambers in atmospheric process studies. Natl. Sci. Rev. 2022, 9, nwab103. [Google Scholar] [CrossRef]
- Lim, Y.B.; Lee, S.B.; Kim, H.; Kim, J.Y.; Bae, G.N. Review of recent smog chamber studies for secondary organic aerosol. J. Korean Soc. Atmos. Environ. 2016, 32, 131–157. [Google Scholar] [CrossRef]
- Brune, W.H. The Chamber Wall Index for Gas–Wall Interactions in Atmospheric Environmental Enclosures. Environ. Sci. Technol. 2019, 53, 3645–3652. [Google Scholar] [CrossRef]
- Becker, K.H. The European Photoreactor EUPHORE: Design and Technical Development of the European Photoreactor and First Experimental Results: Final Report of the EC-Project: Contract EV5V-CT92-0059: Funding Period, January 1993–December 1995; Institute of Physical Chemistry: Warsaw, Poland, 1996. [Google Scholar]
- Rohrer, F.; Bohn, B.; Brauers, T.; Brüning, D.; Johnen, F.J.; Wahner, A.; Kleffmann, J. Characterisation of the photolytic HONOsource in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 2005, 5, 2189–2201. [Google Scholar] [CrossRef]
- Ren, Y.; Grosselin, B.; Daële, V.; Mellouki, A. Investigation of the reaction of ozone with isoprene, methacrolein and methyl vinyl ketone using the HELIOS chamber. Faraday Discuss. 2017, 200, 289–311. [Google Scholar] [CrossRef]
- Fisseha, R.; Dommen, J.; Sax, M.; Paulsen, D.; Kalberer, M.; Maurer, R.; Höfler, F.; Weingartner, E.; Baltensperger, U. Identification of organic acids in secondary organic aerosol and the corresponding gas phase from chamber experiments. Anal. Chem. 2004, 76, 6535–6540. [Google Scholar] [CrossRef]
- Bahreini, R.; Keywood, M.D.; Ng, N.L.; Varutbangkul, V.; Gao, S.; Flagan, R.C.; Seinfeld, J.H.; Worsnop, D.R.; Jimenez, J.L. Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer. Environ. Sci. Technol. 2005, 39, 5674–5688. [Google Scholar] [CrossRef]
- Carter, W.P.; Cockeriii, D.R., III; Fitz, D.R.; Malkina, I.L.; Bumiller, K.; Sauer, C.G.; Pisano, J.; Bufalino, C.; Song, C. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 2005, 39, 7768–7788. [Google Scholar] [CrossRef]
- Pathak, R.K.; Stanier, C.O.; Donahue, N.M.; Pandis, S.N. Ozonolysis of alpha-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields). J. Geophys. Res. 2007, 112, D03201. [Google Scholar] [CrossRef]
- Loza, C.L.; Chhabra, P.S.; Yee, L.D.; Craven, J.S.; Flagan, R.C.; Seinfeld, J.H. Chemical aging of m-xylene secondary organic aerosol: Laboratory chamber study. Atmos. Chem. Phys. 2012, 12, 151–167. [Google Scholar] [CrossRef]
- Nah, T.; McVay, R.C.; Zhang, X.; Boyd, C.M.; Seinfeld, J.H.; Ng, N.L. Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: A case study with α-pinene ozonolysis. Atmos. Chem. Phys. 2016, 16, 9361–9379. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Kleindienst, T.E.; Edney, E.O.; Cohen, J.B. Aerosol growth in a steady-state, continuous flow chamber: Application to studies of secondary aerosol formation. Aerosol Sci. Technol. 2003, 37, 728–734. [Google Scholar] [CrossRef]
- Lee, A.; Goldstein, A.H.; Kroll, J.H.; Ng, N.L.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. 2006, 111, D17. [Google Scholar] [CrossRef]
- Murphy, S.M.; Sorooshian, A.; Kroll, J.H.; Ng, N.L.; Chhabra, P.; Tong, C.; Surratt, J.D.; Knipping, E.; Flagan, R.C.; Seinfeld, J.H. Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos. Chem. Phys. 2007, 7, 2313–2337. [Google Scholar] [CrossRef]
- Jorga, S.D.; Kaltsonoudis, C.; Liangou, A.; Pandis, S.N. Measurement of formation rates of secondary aerosol in the ambient urban atmosphere using a dual smog chamber system. Environ. Sci. Technol. 2020, 54, 1336–1343. [Google Scholar] [CrossRef]
- Boyd, C.M.; Sanchez, J.; Xu, L.; Eugene, A.J.; Nah, T.; Tuet, W.Y.; Guzman, M.I.; Ng, N.L.; Ng, N.L. Secondary organic aerosol formation from the β-pinene+ NO 3 system: Effect of humidity and peroxy radical fate. Atmos. Chem. Phys. 2015, 15, 7497–7522. [Google Scholar] [CrossRef]
- Nah, T.; McVay, R.C.; Pierce, J.R.; Seinfeld, J.H.; Ng, N.L. Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments. Atmos. Chem. Phys. 2017, 17, 2297–2310. [Google Scholar] [CrossRef]
- Kleindienst, T.E.; Jaoui, M.; Lewandowski, M.; Offenberg, J.H.; Lewis, C.W.; Bhave, P.V.; Edney, E.O. Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ. 2007, 41, 8288–8300. [Google Scholar] [CrossRef]
- Al-Naiema, I.M.; Offenberg, J.H.; Madler, C.J.; Lewandowski, M.; Kettler, J.; Fang, T.; Stone, E.A. Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia. Atmos. Environ. 2020, 223, 117227. [Google Scholar] [CrossRef]
- Hastings, W.P.; Koehler, C.A.; Bailey, E.L.; De Haan, D.O. Secondary organic aerosol formation by glyoxal hydration and oligomer formation: Humidity effects and equilibrium shifts during analysis. Environ. Sci. Technol. 2005, 39, 8728–8735. [Google Scholar] [CrossRef]
- Na, K.; Song, C.; Cockeriii III, D.R. Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ. 2006, 40, 1889–1900. [Google Scholar] [CrossRef]
- Vu, D.; Roth, P.; Berte, T.; Yang, J.; Cocker, D.; Durbin, T.D.; Karavalakis, G.; Asa-Awuku, A. Using a new Mobile Atmospheric Chamber (Mach) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. J. Aerosol Sci. 2019, 133, 1–11. [Google Scholar] [CrossRef]
- Docherty, K.S.; Wu, W.; Lim, Y.B.; Ziemann, P.J. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3. Environ. Sci. Technol. 2005, 39, 4049–4059. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Na, K.; Cocker, D.R. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environ. Sci. Technol. 2005, 39, 3143–3149. [Google Scholar] [CrossRef]
- Jahn, L.G.; Wang, D.S.; Dhulipala, S.V.; Ruiz, L.H. Gas-Phase Chlorine Radical Oxidation of Alkanes: Effects of Structural Branching, NOx, and Relative Humidity Observed during Environmental Chamber Experiments. J. Phys. Chem. A. 2021, 125, 7303–7317. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Ziemba, L.D.; Griffin, R.J. Secondary aerosol formation from the oxidation of toluene by chlorine atoms. Atmos. Environ. 2008, 42, 7348–7359. [Google Scholar] [CrossRef]
- Schuetzle, D.; Rasmussen, R.A. The molecular composition of secondary aerosol particles formed from terpenes. J. Air Pollut. Control Assoc. 1978, 28, 236–240. [Google Scholar] [CrossRef]
- Bejan, I.G.; Olariu, R.I.; Wiesen, P. Secondary organic aerosol formation from nitrophenols photolysis under atmospheric conditions. Atmosphere 2020, 11, 1346. [Google Scholar] [CrossRef]
- Pullinen, I.; Schmitt, S.; Kang, S.; Sarrafzadeh, M.; Schlag, P.; Andres, S.; Kleist, E.; Mentel, T.F.; Rohrer, F.; Kiendler-Scharr, A. Impact of NO x on secondary organic aerosol (SOA) formation from α-pinene and β-pinene photooxidation: The role of highly oxygenated organic nitrates. Atmos. Chem. Phys. 2020, 20, 10125–10147. [Google Scholar] [CrossRef]
- Böge, O.; Mutzel, A.; Iinuma, Y.; Yli-Pirilä, P.; Kahnt, A.; Joutsensaari, J.; Herrmann, H. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene. Atmos. Environ. 2013, 79, 553–560. [Google Scholar] [CrossRef]
- Gatzsche, K.; Iinuma, Y.; Tilgner, A.; Mutzel, A.; Berndt, T.; Wolke, R. Kinetic modeling studies of SOA formation from α-pinene ozonolysis. Atmos. Chem. Phys. 2017, 17, 13187–13211. [Google Scholar] [CrossRef]
- Kamm, S.; Mohler, O.; Naumann, K.H.; Saathoff, H.; Schurath, U. The heterogeneous reaction of ozone with soot aerosol. Atmos. Environ. 1999, 33, 4651–4661. [Google Scholar] [CrossRef]
- Lamkaddam, H.; Gratien, A.; Pangui, E.; Cazaunau, M.; Picquet-Varrault, B.; Doussin, J.F. High-NO x photooxidation of n-dodecane: Temperature dependence of SOA formation. Environ. Sci. Technol. 2017, 51, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, L.; Perraudin, E.; Maurin, N.; Picquet-Varrault, B.; Zheng, W.; Marchand, N.; Temime-Roussel, B.; Monod, A.; Le Person, A.; Bernard, F.; et al. Organic Aerosol Formation from Aromatic Alkene Ozonolysis: Influence of the Precursor Structure on Yield, Chemical Composition, and Mechanism. J. Phys. Chem. A 2019, 123, 1469–1484. [Google Scholar] [CrossRef] [PubMed]
- Henry, F.; Coeur-Tourneur, C.; Ledoux, F.; Tomas, A.; Menu, D. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o-and p-cresol. Atmos. Environ. 2008, 42, 3035–3045. [Google Scholar] [CrossRef]
- Du, M.; Voliotis, A.; Shao, Y.; Wang, Y.; Bannan, T.J.; Pereira, K.L.; Hamilton, J.F.; Percival, C.J.; Alfarra, M.R.; McFiggans, G. Combined application of online FIGAERO-CIMS and offline LC-Orbitrap mass spectrometry (MS) to characterize the chemical composition of secondary organic aerosol (SOA) in smog chamber studies. Atmos. Meas. Tech. 2022, 15, 4385–4406. [Google Scholar] [CrossRef]
- Wang, Y.; Voliotis, A.; Hu, D.; Shao, Y.; Du, M.; Chen, Y.; Kleinheins, J.; Marcolli, C.; Alfarra, M.R.; McFiggans, G. On the evolution of sub-and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors. Atmos. Chem. Phys. 2022, 22, 4149–4166. [Google Scholar] [CrossRef]
- Glowacki, D.; Goddard, A.; Hemavibool, K.; Malkin, T.; Commane, R.; Anderson, F.; Bloss, W.; Heard, D.; Ingham, T.; Pilling, M.; et al. Design of and initial results from a highly instru-mented reactor for atmospheric chemistry (HIRAC). Atmos. Chem. Phys. 2007, 7, 5371–5390. [Google Scholar] [CrossRef]
- Massabó, D.; Danelli, S.G.; Brotto, P.; Comite, A.; Costa, C.; Di Cesare, A.; Doussin, J.F.; Ferraro, F.; Formenti, P.; Gatta, E.; et al. ChAMBRe: A new atmospheric simulation chamber for aerosol modelling and bio-aerosol research. Atmos. Meas. Tech. 2018, 11, 5885–5900. [Google Scholar] [CrossRef]
- Kristensen, K.; Jensen, L.N.; Quéléver, L.L.; Christiansen, S.; Rosati, B.; Elm, J.; Teiwes, R.; Pedersen, H.B.; Glasius, M.; Bilde, M.; et al. The Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA): Particle formation, organic acids, and dimer esters from α-pinene ozonolysis at different temperatures. Atmos. Chem. Phys. 2020, 20, 12549–12567. [Google Scholar] [CrossRef]
- Hartikainen, A.; Yli-Pirilä, P.; Tiitta, P.; Leskinen, A.; Kortelainen, M.; Orasche, J.; Schnelle-Kreis, J.; Lehtinen, K.E.J.; Zimmermann, R.; Sippula, O.; et al. Volatile organic compounds from logwood combustion: Emissions and transformation under dark and photochemical aging conditions in a smog chamber. Environ. Sci. Technol. 2018, 52, 4979–4988. [Google Scholar] [CrossRef]
- Nordin, E.Z.; Eriksson, A.C.; Roldin, P.; Nilsson, P.T.; Carlsson, J.E.; Kajos, M.K.; Hellén, H.; Wittbom, C.; Rissler, J.; Pagels, J.H.; et al. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmos. Chem. Phys. 2013, 13, 6101–6116. [Google Scholar] [CrossRef]
- Keller, A.; Burtscher, H. A continuous photo-oxidation flow reactor for a defined measurement of the SOA formation potential of wood burning emissions. J. Aerosol Sci. 2012, 49, 9–20. [Google Scholar] [CrossRef]
- Stefenelli, G.; Jiang, J.; Bertrand, A.; Bruns, E.A.; Pieber, S.M.; Baltensperger, U.; Marchand, N.; Aksoyoglu, S.; Prévôt, A.S.H.; El Haddad, I.; et al. Secondary organic aerosol formation from smoldering and flaming combustion of biomass: A box model parametrization based on volatility basis set. Atmos. Chem. Phys. 2019, 19, 11461–11484. [Google Scholar] [CrossRef]
- Paulsen, D.; Dommen, J.; Kalberer, M.; Prévôt, A.S.; Richter, R.; Sax, M.; Steinbacher, M.; Weingartner, E.; Baltensperger, U. Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry and physics. Environ. Sci. Technol. 2005, 39, 2668–2678. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Liu, Y.; Zhang, Y.; Feng, Z.; Zhan, J.; Hua, C.; Ma, L.; Guo, Y.; Zhang, Y.; Zhou, W.; et al. A new type of quartz smog chamber: Design and characterization. Environ. Sci. Technol. 2022, 56, 2181–2190. [Google Scholar] [CrossRef]
- Deng, W.; Liu, T.; Zhang, Y.; Situ, S.; Hu, Q.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Wang, X.; et al. Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix. Atmos. Environ. 2017, 150, 67–76. [Google Scholar] [CrossRef]
- Deng, W.; Fang, Z.; Wang, Z.; Zhu, M.; Zhang, Y.; Tang, M.; Song, W.; Lowther, S.; Huang, Z.; Jones, K.; et al. Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode. Sci. Total Environ. 2020, 699, 134357. [Google Scholar] [CrossRef]
- Wang, S.; Tsona, N.T.; Du, L. Effect of NOx on secondary organic aerosol formation from the photochemical transformation of allyl acetate. Atmos. Environ. 2021, 255, 118426. [Google Scholar] [CrossRef]
- Qi, X.; Zhu, S.; Zhu, C.; Hu, J.; Lou, S.; Xu, L.; Dong, J.; Cheng, P. Smog chamber study of the effects of NOx and NH3 on the formation of secondary organic aerosols and optical properties from photo-oxidation of toluene. Sci. Total Environ. 2020, 727, 138632. [Google Scholar] [CrossRef]
- Chen, L.; Bao, Z.; Wu, X.; Li, K.; Han, L.; Zhao, X.; Zhang, X.; Wang, Z.; Azzi, M.; Cen, K. The effects of humidity and ammonia on the chemical composition of secondary aerosols from toluene/NOx photo-oxidation. Sci. Total Environ. 2020, 728, 138671. [Google Scholar] [CrossRef] [PubMed]
- Babar, Z.B.; Park, J.H.; Kang, J.; Lim, H.J. Characterization of a smog chamber for studying formation and physicochemical properties of secondary organic aerosol. Aerosol Air Qual. Res. 2016, 16, 3102–3113. [Google Scholar] [CrossRef]
- Pandis, S.N.; Paulson, S.E.; Seinfeld, J.H.; Flagan, R.C. Aerosol formation in the photooxidation of isoprene and β-pinene. Atmos. Environ. A Gen. Top. 1991, 25, 997–1008. [Google Scholar] [CrossRef]
- Odum, J.R.; Jungkamp, T.P.W.; Griffin, R.J.; Flagan, R.C.; Seinfeld, J.H. The atmospheric aerosol-forming potential of whole gasoline vapor. Science 1997, 276, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Jang, M.; Zhang, T.; Madhu, A.; Han, S. Simulation of monoterpene SOA formation by multiphase reactions using explicit mechanisms. ACS Earth Space Chem. 2021, 5, 1455–1467. [Google Scholar] [CrossRef]
- Madhu, A.; Jang, M.; Deacon, D. Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes. Atmos. Chem. Phys. 2023, 23, 1661–1675. [Google Scholar] [CrossRef]
- Kamens, R.; Jang, M.; Chien, C.J.; Leach, K. Aerosol formation from the reaction of α-pinene and ozone using a gas-phase kinetics-aerosol partitioning model. Environ. Sci. Technol. 1999, 33, 1430–1438. [Google Scholar] [CrossRef]
- Jang, M.; Kamens, R.M. Newly characterized products and composition of secondary aerosols from the reaction of α-pinene with ozone. Atmos. Environ. 1999, 33, 459–474. [Google Scholar] [CrossRef]
- Jang, M.; Kamens, R.M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ. Sci. Technol. 2001, 35, 3626–3639. [Google Scholar] [CrossRef]
- Leungsakul, S.; Jaoui, M.; Kamens, R.M. Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of d-limonene with ozone. Environ. Sci. Technol. 2005, 39, 9583–9594. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Parikh, H.M.; Chen, E.H.; Rattanavaraha, W.; Rosen, E.P.; Wang, W.; Kamens, R.M. Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: Water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882–3890. [Google Scholar] [CrossRef]
- Emanuelsson, E.U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Mentel, T.F. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties. Atmos. Chem. Phys. 2013, 13, 2837–2855. [Google Scholar] [CrossRef]
- Brownwood, B.; Turdziladze, A.; Hohaus, T.; Wu, R.; Mentel, T.F.; Carlsson, P.T.; Tsiligiannis, E.; Hallquist, M.; Andres, S.; Fry, J.L.; et al. Gas-particle partitioning and SOA yields of organonitrate products from NO3-initiated oxidation of isoprene under varied chemical regimes. ACS Earth Space Chem. 2021, 5, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Spittler, M.; Barnes, I.; Bejan, I.; Brockmann, K.J.; Benter, T.; Wirtz, K. Reactions of NO3 radicals with limonene and α-pinene: Product and SOA formation. Atmos. Environ. 2006, 40, 116–127. [Google Scholar] [CrossRef]
- Couvidat, F.; Vivanco, M.G.; Bessagnet, B. Simulating secondary organic aerosol from anthropogenic and biogenic precursors: Comparison to outdoor chamber experiments, effect of oligomerization on SOA formation and reactive uptake of aldehydes. Atmos. Chem. Phys. 2018, 18, 15743–15766. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Wang, X.; Wang, W.; Ge, M.; Zhang, H.; Zhang, X.; Li, K.; Chen, Y.; Wu, Z.; et al. A large-scale outdoor atmospheric simulation smog chamber for studying atmospheric photochemical processes: Characterization and preliminary application. J. Environ. Sci. 2021, 102, 185–197. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M. Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols: An environmental chamber study. Atmos. Environ. 2011, 45, 4015–4024. [Google Scholar] [CrossRef]
- Miracolo, M.A.; Hennigan, C.J.; Ranjan, M.; Nguyen, N.T.; Gordon, T.D.; Lipsky, E.M.; Presto, A.A.; Donahue, N.M.; Robinson, A.L. Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber. Atmos. Chem. Phys. 2011, 11, 4135–4147. [Google Scholar] [CrossRef]
- Kaltsonoudis, C.; Jorga, S.D.; Louvaris, E.; Florou, K.; Pandis, S.N. A portable dual-smog-chamber system for atmospheric aerosol field studies. Atmos. Meas. Tech. 2019, 12, 2733–2743. [Google Scholar] [CrossRef]
- Jorga, S.D.; Florou, K.; Kaltsonoudis, C.; Kodros, J.K.; Vasilakopoulou, C.; Cirtog, M.; Fouqueau, A.; Picquet-Varrault, B.; Nenes, A.; Pandis, S.N. Nighttime chemistry of biomass burning emissions in urban areas: A dual mobile chamber study. Atmos. Chem. Phys. 2021, 21, 15337–15349. [Google Scholar] [CrossRef]
- Platt, S.M.; El Haddad, I.; Zardini, A.A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J.G.; Temime-Roussel, B.; Marchand, N.; Prévôt, A.S. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos. Chem. Phys. 2013, 13, 9141–9158. [Google Scholar] [CrossRef]
- Ezell, M.J.; Johnson, S.N.; Yu, Y.; Perraud, V.; Bruns, E.A.; Alexander, M.L.; Zelenyuk, A.; Dabdub, D.; Finlayson-Pitts, B.J. A new aerosol flow system for photochemical and thermal studies of tropospheric aerosols. Aerosol Sci. Technol. 2010, 44, 329–338. [Google Scholar] [CrossRef]
- König, U.; Nitschke, M.; Pilz, M.; Simon, F.; Arnhold, C.; Werner, C. Stability and ageing of plasma treated poly(tetrafluoroethylene) surfaces. Colloids Surf. B Biointerfaces 2002, 25, 313–324. [Google Scholar] [CrossRef]
- Everett, M.L.; Hoflund, G.B. Chemical alteration of poly(tetrafluoroethylene) TFE Teflon induced by exposure to electrons and inert-gas ions. J. Phys. Chem. B. 2005, 109, 16676–16683. [Google Scholar] [CrossRef]
- Kim, S.R. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000, 77, 1913–1920. [Google Scholar] [CrossRef]
- Von Hessberg, C.; Von Hessberg, P.; Pöschl, U.; Bilde, M.; Nielsen, O.J.; Moortgat, G.K. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene. Atmos. Chem. Phys. 2009, 9, 3583–3599. [Google Scholar] [CrossRef]
- Chou, A.; Li, Z.; Tao, F.M. Density functional studies of the formation of nitrous acid from the reaction of nitrogen dioxide and water vapor. J. Phys. Chem. A 1999, 103, 7848–7855. [Google Scholar] [CrossRef]
- Babar, Z.B.; Park, J.H.; Lim, H.J. Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor. Atmos. Environ. 2017, 164, 71–84. [Google Scholar] [CrossRef]
- Cocker, D.R., III; Clegg, S.L.; Flagan, R.C.; Seinfeld, J.H. The effect of water on gas–particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system. Atmos. Environ. 2001, 35, 6049–6072. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Erdakos, G.B.; Asher, W.E.; Pankow, J.F. Modeling the formation of secondary organic aerosol (SOA): 2. The predicted effects of relative humidity on aerosol formation in the α-pinene-, β-pinene-, sabinene-, Δ3-carene-, and cyclohexene-ozone systems. Environ. Sci. Technol. 2001, 35, 1806–1817. [Google Scholar] [CrossRef]
- Doussin, J.-F.; Fuchs, H.; Kiendler-Scharr, A.; Seakins, P.; Wenger, J. A Practical Guide to Atmospheric Simulation Chambers; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Rodrigue, J.; Dhaniyala, S.; Ranjan, M.; Hopke, P.K. Performance comparison of scanning electrical mobility spectrometers. Aerosol Sci. Technol. 2007, 41, 360–368. [Google Scholar] [CrossRef]
- DeCarlo, P.F.; Slowik, J.G.; Worsnop, D.R.; Davidovits, P.; Jimenez, J.L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 2004, 38, 1185–1205. [Google Scholar] [CrossRef]
- Malloy, Q.G.J.; Nakao, S.; Qi, L.; Austin, R.; Stothers, C.; Hagino, H.; Cocker, D.R., III. Real-time aerosol density determination utilizing a modified scanning mobility particle sizer—Aerosol particle mass analyzer system. Aerosol Sci. Technol. 2009, 43, 673–678. [Google Scholar] [CrossRef]
- Carlton, A.G.; Wiedinmyer, C.; Kroll, J.H. A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9, 4987–5005. [Google Scholar] [CrossRef]
- Grosjean, D. Wall loss of gaseous pollutants in outdoor Teflon chambers. Environ. Sci. Technol. 1985, 19, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- McMurry, P.H.; Grosjean, D. Gas and aerosol wall losses in Teflon film smog chambers. Environ. Sci. Technol. 1985, 19, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, A.; Ziemann, P.J. Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements. Aerosol Sci. Technol. 2010, 44, 881–892. [Google Scholar] [CrossRef]
- Weitkamp, E.A.; Sage, A.M.; Pierce, J.R.; Donahue, N.M.; Robinson, A.L. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ. Sci. Technol. 2007, 41, 6969–6975. [Google Scholar] [CrossRef]
- Weitkamp, E.A. Laboratory Studies of Oxidation of Primary Emissions: Oxidation of Organic Molecular Markers and Secondary Organic Aerosol Production. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2007. [Google Scholar]
Location | Country | Institute (Chamber) | Reactor Size | Wall Material | Light Source | Reference |
---|---|---|---|---|---|---|
Indoor | USA | Caltech | 11.3 m3 | TFE | Fluorescent bulb | [24] |
Indoor | USA | Caltech | Dual 28 m3 | FEP | Blacklight lamp | [19,25,26] |
Indoor | USA | Carnegie Mellon U. | Dual 1.5 m3 | PTFE | UV lamp | [27] |
Indoor | USA | Georgia Institute of Technology | Dual 12 m3 | FEP | Blacklight lamp | [23,28,29] |
Indoor | USA | National Exposure Research Lab | 14.5 m3 | PTFE | Fluorescent bulb | [30,31] |
Indoor | USA | U. of San Diego | 0.3 m3 | Tedlar/Teflon | N/A | [32] |
Indoor | USA | UC Riverside | 18 m3 | Teflon | Dark | [33] |
Indoor | USA | UC Riverside | 30 m3 | FEP | Blacklight lamp | [34] |
Indoor | USA | UC Riverside | 7 m3 | PTFE | Dark | [35] |
Indoor | USA | UC Riverside | Dual 90 m3 | FEP | Argon arc lamp, Blacklight lamp | [20,36] |
Indoor | USA | UT Austin | 10 m3 | Teflon | Blacklight lamp | [37] |
Indoor | USA | U. of New Hampshire | 6 m3 | FEP | Blacklight lamp | [38] |
Indoor | USA | Washington State U. | 2 m3 | PVF | Blacklight lamp | [39] |
Indoor | Germany | U. of Wuppertal (QUAREC) | 1.08 m3 | Quartz | Blacklight lamp | [40] |
Indoor | Germany | Institute for Energy and Climate Research | 1.45 m3 | Teflon | UV lamp | [41] |
Indoor | Germany | TROPOS (LEAK) | 19 m3 | Teflon | Blacklight lamp | [42,43] |
Indoor | Germany | KIT (AIDA) | 84 m3 | Aluminium | LED | [44] * |
Indoor | France | LISA (CESAM) | 4.2 m3 | Stainless steel | Xenon arc lamp | [45,46] |
Indoor | France | ICARE | 7.3 m3 | FEP | N/A | [46] |
Indoor | France | U. of the Littoral Opal Coast | 8 m3 | Altuglas | Dark, Fluorescence tube | [47] |
Indoor | UK | Manchester U. (MAC) | 18 m3 | FEP | Xenon arc lamp | [48,49] |
Indoor | UK | U. of Leeds (HIRAC) | 2 m3 | Stainless steel | Blacklight lamp | [50] |
Indoor | Ireland | U. College Cork (IASC) | 27 m3 | FEP | UV lamp | |
Indoor | Italy | INFN (CHAMBRe) | 2.2 m3 | Stainless steel | UV lamp | [51] * |
Indoor | Denmark | Aarhus University Research on Aerosol | 5 m3 | Teflon | UV lamp | [52] |
Indoor | Finland | U. of Eastern Finland (ILMARI) | 29 m3 | Teflon | Blacklight lamp | [53] |
Indoor | Romania | Alexandru Ioan Cuza U. (CERNESIM) | 0.76 m3 | Quartz | Blacklight lamp | |
Indoor | Sweden | Lund U. | 6 m3 | FEP | UV lamp | [54] |
Indoor | Switzerland | U. of Applied Sciences | 76 mL | Quartz | Mercury lamp, UV lamp, Halogen lamp | [55] |
Indoor | Switzerland | Paul Scherrer Institute (PACS) | 5.5 m3 | Teflon | UV lamp | [56] |
Indoor | Switzerland | Paul Scherrer Institute (PACS) | 27 m3 | FEP | Xenon arc lamp | [18,57] |
Indoor | China | Beijing U. | 10 m3 | Quartz | Dark/UV lamp | [58] |
Indoor | China | Chinese Academy of Sciences | 30 m3 | FEP | Blacklight lamp | [59,60] |
Indoor | China | Shandong Jianzhu U. | 1 m3 | FEP | Blacklight lamp | [61] |
Indoor | China | Shanghai U. | 1.2 m3 | Teflon | Blacklight lamp | [62] |
Indoor | China | Zhejiang U. | 3 m3 | Teflon | Blacklight lamp | [63] |
Indoor | Republic of Korea | Kyungpook National U. | 7 m3 | FEP | UV lamp | [64] |
Outdoor | USA | Caltech | 60 m3 | PTFE | Sun | [65,66] |
Outdoor | USA | U. of Florida (UF-APHOR) | Dual 52 m3 | FEP | Sun | [67,68] |
Outdoor | USA | U. of North Carolina | 190 m3 | Teflon | Dark/Sun | [69,70,71] |
Outdoor | USA | U. of North Carolina | Dual 270 m3 | Teflon | Sun | [72,73] |
Outdoor | Germany | Forschungszentrum Jülich (SAPHIR) | 270 m3 | FEP | Sun | [74,75] |
Outdoor | Spain | CEAM (EUPHORE) | Dual 200 m3 | Teflon | Sun | [46,76,77] |
Outdoor | France | ICARE (HELIOS) | 90 m3 | FEP | Sun | [17] |
Outdoor | China | Chinese Research Academy of Environmental Sciences | 56 m3 | FEP | Sun | [78] |
Outdoor | India | Indian Institute of Technology Kanpur | 12.5 m3 | FEP | Sun | [79] |
Mobile | USA | Carnegie Mellon U. | 7 m3 | Teflon | Blacklight lamp/Sun | [80] |
Mobile | Greece | Foundation for Research and Technology Hellas (FORTH) | Dual 1.5 m3 | PTFE | UV lamp/Sun | [81,82] |
Mobile | Switzerland | Paul Scherrer Institute (PACS) | 9 m3 | FEP | UV lamp | [83] |
First Author | Year | Light Intensity | Light Spectrum | Ref. |
---|---|---|---|---|
Al-Naiema | 2020 | NO2 photolysis rate (0.34/min) | Peak wavelength (300–400 nm) | [31] |
Babar | 2016 | NO2 photolysis rate (0.17/min) | Full spectral distribution | [64] |
Bejan | 2020 | - | Peak wavelength (360 nm) | [40] |
Boyd | 2015 | NO2 photolysis rate (0.28/min) | Peak wavelength (354 nm) | [28] |
Cai | 2008 | - | Peak wavelength (365 nm) | [38] |
Carter | 2005 | NO2 photolysis rate (0.26/min) | Full spectral distribution | [20] |
Chen | 2020 | NO2 photolysis rate (0.38/min) | - | [63] |
Deng | 2020 | NO2 photolysis rate (0.25/min) | - | [60] |
Du | 2022 | NO2 photolysis rate (0.11~0.18/min) | - | [48] |
Hartikainen | 2018 | - | Peak wavelength (350 nm) | [53] |
Jahn | 2021 | - | Peak wavelength (354 nm) | [37] |
Kaltsonoudis | 2019 | NO2 photolysis rate (0.1/min) | Peak wavelength (350–400 nm) | [81] |
Keller | 2012 | - | Peak wavelength (254 nm) | [55] |
Kleindienst | 2007 | - | Peak wavelength (300–400 nm) | [30] |
Kristensen | 2020 | NO2 photolysis rate (0.2/min) | Peak wavelength (350 nm) | [52] |
Lee | 2006 | - | Peak wavelength (354 nm) | [25] |
Ma | 2022 | NO2 photolysis rate (0.40/min) | Peak wavelength (371 nm) | [58] |
Murphy | 2007 | - | Peak wavelength (354 nm) | [26] |
Nordin | 2013 | NO2 photolysis rate (0.2/min) | Peak wavelength (350 nm) | [54] |
Paulsen | 2005 | NO2 photolysis rate (0.12/min) | Note 1 | [57] |
Platt | 2013 | NO2 photolysis rate 0.24 /min | Peak wavelength (368 nm) | [83] |
Pullinen | 2020 | - | Peak wavelength (365 nm) | [41] |
Qi | 2020 | NO2 photolysis rate (0.17/min) | Peak wavelength (365 nm) | [62] |
Schuetzle | 1978 | Note 2 | - | [39] |
Seinfeld | 2003 | - | Peak wavelength (244 nm) | [24] |
Stefenelli | 2019 | - | Peak wavelength (400 nm) | [56] |
Vu | 2019 | NO2 photolysis rate (0.23/min) | Peak wavelength (365 nm) | [34] |
Wang | 2021 | NO2 photolysis rate (0.117/min) | - | [61] |
Location | First Author | Year | Temperature | Humidity | Ref. |
---|---|---|---|---|---|
Indoor | Al-Naiema | 2020 | - | 30% | [31] |
Babar | 2016 | 24 °C | <3% | [64] | |
Bahreini | 2005 | 20 ± 2 °C | <10%, 55 ± 5% | [19] | |
Bejan | 2020 | 10–40 °C | - | [40] | |
Boyd | 2015 | - | <2%, 50%, 70% | [28] | |
Cai | 2008 | 24–27 °C | - | [38] | |
Carter | 2005 | 27–32 °C | - | [20] | |
Chen | 2020 | 37 °C | 7%, 63–68% | [63] | |
Deng | 2017 | 24.6–26.9 °C | 50.5–63.7% | [59] | |
Deng | 2020 | 25 ± 1 °C | 2.7–10.3% | [60] | |
Du | 2022 | 25 °C | 50% | [48] | |
Docherty | 2005 | 25 ± 3 °C | <0.5% | [35] | |
Fisseha | 2004 | 20 °C | 40–50% | [18] | |
Gatzsche | 2017 | - | <55% | [43] | |
Hastings | 2005 | 20 °C | 22–44% | [32] | |
Hartikainen | 2018 | 18 ± 2 °C | 60 ± 5% | [53] | |
Henry | 2008 | 21 ± 2 °C | 6–10% | [47] | |
Jahn | 2021 | - | <5%, 40–55% | [37] | |
Jorga | 2020 | 23–25 °C | 20–70% | [27] | |
Keller | 2012 | 25–35 °C | <4%, 21–24% | [55] | |
Kristensen | 2020 | −14.5–20.3 °C | 0–19.8% | [52] | |
Lamkaddam | 2017 | 50 °C | <1% | [45] | |
Lee | 2006 | 20–22 °C | 40–56% | [25] | |
Ma | 2022 | 15–30 ± 1 °C | <10% | [58] | |
Murphy | 2007 | 20–25 °C | <10% | [26] | |
Na | 2006 | 20 ± 1 °C | <2%, 50–60% | [33] | |
Nah | 2016 | 25 °C | <5% | [23] | |
Nah | 2017 | 25 °C | <5% | [29] | |
Nordin | 2013 | 22 ± 2 °C | 3–10% | [54] | |
Paulsen | 2005 | 23.5 ± 1 °C | 50% | [57] | |
Qi | 2020 | 25 ± 2 °C | <20% | [62] | |
Song | 2005 | 27 °C | <2% | [36] | |
Stefenelli | 2019 | −10, 2, 15 °C | 50% | [56] | |
Vu | 2019 | 25, 30 °C | <7% | [34] | |
Wang | 2021 | 25 ± 3 °C | 29 ± 3% | [61] | |
Wang | 2022 | 25 ± 2 °C | 50 ± 5% | [49] | |
Outdoor | Behera | 2011 | 35.8 ± 5.7 °C | 58.3 ± 17.5% | [79] |
Couvidat | 2018 | 21–36 °C | 0.4–37% | [77] | |
Jang | 1999 | −5–24 °C | 55–100% | [70] | |
Jang | 2001 | 29–31 °C | 34–38% | [71] | |
Kamens | 1999 | 6–23 °C | 55–100% | [69] | |
Leungsakul | 2005 | 8–40 °C | - | [72] | |
Li | 2021 | 2–44 °C | <1% | [78] | |
Madhu | 2023 | 4–52 °C | 12–99% | [68] | |
Zhou | 2011 | 2–40 °C | 9–98% | [73] | |
Mobile | Jorga | 2021 | 13–24 °C | 30–45% | [82] |
Miracolo | 2011 | 23 ± 2.5 °C | 14.7 ± 3.8% | [80] | |
Platt | 2013 | 22 °C | - | [83] |
Category | Pollutant | Basis for Detection | Equipment | Typical Result |
---|---|---|---|---|
General pollutant detector | Gas | Surface affinity (SA) | GC-ECD | Nitrate concentration |
GC-FID | Hydrocarbon concentration | |||
GC-PID | Hydrocarbon concentration | |||
Mass | ESI-MS, LDI-MS, MS, PTR-MS, SPI-MS, CI-MS | Mass spectrum of gas-phase oxidation product | ||
SA and mass | GC-MS, GC-MSD | Mass spectrum of gas-phase oxidation product | ||
Ion | Ion affinity | IC, PILS-IC | Ion concentration | |
Ion affinity and mass | IC-MS | Mass spectrum of ion oxidation product | ||
Particle | N/A | CPC | Count of SOA | |
Size | EAA, SEMS (DMA-CPC), SMPS (DMA-CPC) | Size spectrum of SOA | ||
Mass | AMS | Mass spectrum of SOA | ||
Size and mass | APM-SMPS | Density spectrum of SOA | ||
Light absorption | FTIR | Infrared absorption spectrum of SOA | ||
Specific pollutant detector | NOx | - | NOx analyzer | NOx concentration |
O3 | - | O3 analyzer | O3 concentration | |
CO, CO2 | - | CO, CO2 analyzer | CO, CO2 concentration | |
SO2 | - | SO2 analyzer | SO2 concentration | |
NH3 | - | NH3 analyzer | NH3 concentration |
First Author | Year | Gas | Ion | Particle | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Detector | MS | Hybrid | Detector | Hybrid | Sizer | MS | Hybrid | FTIR | |||
Al-Naiema | 2020 | GC-FID | IC | [31] | |||||||
Babar | 2016 | GC-PID | SMPS | [64] | |||||||
Bahreini | 2005 | GC-FID | SEMS | AMS | [19] | ||||||
Behera | 2011 | [79] | |||||||||
Bejan | 2020 | SMPS | FTIR | [40] | |||||||
Boyd | 2015 | GC-FID | CI-MS | SMPS | AMS | [28] | |||||
Brownwood | 2021 | CI-MS | SMPS | AMS | [75] | ||||||
Cai | 2008 | GC-FID | SMPS | AMS | [38] | ||||||
Carter | 2005 | GC-FID | SEMS | [20] | |||||||
Couvidat | 2018 | SMPS | [77] | ||||||||
Chen | 2020 | GC-MS | SMPS | AMS | [63] | ||||||
Deng | 2017 | GC-FID | PTR-MS | GC-MS | SMPS | AMS | [59] | ||||
Deng | 2020 | GC-FID | PTR-MS | GC-MS | SMPS | AMS | [60] | ||||
Du | 2022 | CI-MS | [48] | ||||||||
Docherty | 2005 | GC-FID | SMPS | AMS | [35] | ||||||
Emanuelsson | 2013 | PTR-MS | SMPS | [74] | |||||||
Fisseha | 2004 | PTR-MS | GC-MS | IC-MS | SMPS | AMS | [18] | ||||
Gatzsche | 2017 | PTR-MS | SMPS | [43] | |||||||
Hastings | 2005 | ESI-MS | GC-MS | SMPS | [32] | ||||||
Hartikainen | 2018 | PTR-MS | GC-MS | SMPS | AMS | [53] | |||||
Henry | 2008 | GC-FID | SMPS | [47] | |||||||
Jahn | 2021 | CI-MS | SEMS | [37] | |||||||
Jang | 1999 | GC-MS | FTIR | [70] | |||||||
Jang | 2001 | GC-MS | FTIR | [71] | |||||||
Jorga | 2020 | PTR-MS | SMPS | AMS | [27] | ||||||
Jorga | 2021 | PTR-MS | SMPS | AMS | [82] | ||||||
Kaltsonoudis | 2019 | PTR-MS | SMPS | AMS | [81] | ||||||
Kamens | 1999 | GC-FID | EAA | [69] | |||||||
Keller | 2012 | SMPS | [55] | ||||||||
Kleindienst | 2007 | GC-MS | [30] | ||||||||
Kristensen | 2020 | GC-FID | PTR-MS | SMPS | [52] | ||||||
Lamkaddam | 2017 | PTR-MS | SMPS | FTIR | [45] | ||||||
Lee | 2006 | GC-FID | PTR-MS | [25] | |||||||
Leungsakul | 2005 | GC-ECD | SMPS | FTIR | [72] | ||||||
Li | 2021 | GC-MS | SMPS | FTIR | [78] | ||||||
Ma | 2022 | SPI-MS, PTR-MS | SMPS | [58] | |||||||
Madhu | 2023 | GC-FID | PILS-IC | SMPS | [68] | ||||||
Miracolo | 2011 | GC-MS | SMPS | AMS | [80] | ||||||
Murphy | 2007 | LDI-MS | PILS-IC | DMA | AMS | [26] | |||||
Na | 2006 | GC-FID | SEMS | [33] | |||||||
Nah | 2016 | GC-FID | SMPS | AMS | [23] | ||||||
Nah | 2017 | GC-FID | SMPS | AMS | [29] | ||||||
Nordin | 2013 | PTR-MS | GC-MS | SMPS | AMS | [54] | |||||
Odum | 1997 | GC * | SEMS | [66] | |||||||
Pandis | 1991 | GC-FID | GC-MS | SEMS | [65] | ||||||
Paulsen | 2005 | GC-FID | LDI-MS, PTR-MS | GC-MS | IC | IC-MS | SMPS | FTIR | [57] | ||
Platt | 2013 | SMPS | FTIR | [83] | |||||||
Pullinen | 2020 | PTR-MS | GC-MS | AMS | [41] | ||||||
Qi | 2020 | SPI-MS | SMPS | AMS | [62] | ||||||
Schuetzle | 1978 | MS | [39] | ||||||||
Seinfeld | 2003 | GC-FID | SMPS | [24] | |||||||
Song | 2005 | GC-FID | SMPS | [36] | |||||||
Stefenelli | 2019 | PTR-MS | GC-MS | SMPS | AMS | [56] | |||||
Vu | 2019 | SMPS | AMS | APM-SMPS | [34] | ||||||
Wang | 2021 | GC-FID | GC-MS | SMPS | [61] | ||||||
Wang | 2022 | AMS | [49] | ||||||||
Yu | 2021 | GC-FID | PILS-IC | SMPS | FTIR | [67] | |||||
Zhou | 2011 | SMPS | [73] |
First Author | Year | Density for SOA Yield Calculation | Ref. |
---|---|---|---|
Babar | 2016 | 1 g/cm3 (assumed) | [64] |
Bahreini | 2005 | 0.64–1.45 g/cm3 (measured) | [19] |
Cai | 2008 | 1 g/cm3 (assumed) | [38] |
Chen | 2020 | 1.35 g/cm3 (assumed) | [63] |
Deng | 2017 | 1.4 g/cm3 (assumed) | [59] |
Deng | 2020 | 1 g/cm3 (assumed) | [60] |
Docherty | 2005 | 1 g/cm3 (assumed) | [35] |
Emanuelsson | 2013 | 1.4 g/m3 (assumed) | [74] |
Fisseha | 2004 | 1.38 g/m3 (measured) | [18] |
Gatzsche | 2017 | 1 g/cm3 (measured) | [43] |
Henry | 2008 | 1.4 g/cm3 (assumed) | [47] |
Jorga | 2020 | 1.25–1.35 g/cm3 (measured) | [27] |
Kristensen | 2020 | 1.4 g/m3 (assumed) | [52] |
Lee | 2006 | 1.25 g/cm3 (assumed) | [25] |
Leungsakul | 2005 | 1 g/cm3 (assumed) | [72] |
Ma | 2022 | 1.3–1.45 g/cm3 (assumed) | [58] |
Madhu | 2023 | 1.2 g/cm3 (assumed) | [68] |
Miracolo | 2011 | 1.1 g/m3 (measured) | [80] |
Murphy | 2007 | 1–1.1 g/cm3 (measured) | [26] |
Na | 2006 | 1 g/cm3 (assumed) | [33] |
Nah | 2016 | 1.37–1.39 g/cm3 (measured) | [23] |
Nah | 2017 | 1.37 g/cm3 (measured) | [29] |
Odum | 1997 | 1 g/cm3 (assumed) | [66] |
Pandis | 1991 | 1.4 g/cm3 (assumed) | [65] |
Paulsen | 2005 | 1 g/cm3 (assumed) | [57] |
Qi | 2020 | 1.4 g/cm3 (assumed) | [62] |
Song | 2005 | 1 g/cm3 (assumed) | [36] |
Wang | 2021 | 1.4 g/cm3 (assumed) | [61] |
Wang | 2022 | 1.4 g/cm3 (assumed) | [49] |
Yu | 2021 | 1.38 g/cm3 (measured) | [67] |
Zhou | 2011 | 1 g/cm3 (assumed) | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kang, D.; Jung, H.Y.; Jeon, J.; Lee, J.Y. Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation. Atmosphere 2024, 15, 115. https://doi.org/10.3390/atmos15010115
Kim H, Kang D, Jung HY, Jeon J, Lee JY. Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation. Atmosphere. 2024; 15(1):115. https://doi.org/10.3390/atmos15010115
Chicago/Turabian StyleKim, Hyun, Dahyun Kang, Heon Young Jung, Jongho Jeon, and Jae Young Lee. 2024. "Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation" Atmosphere 15, no. 1: 115. https://doi.org/10.3390/atmos15010115
APA StyleKim, H., Kang, D., Jung, H. Y., Jeon, J., & Lee, J. Y. (2024). Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation. Atmosphere, 15(1), 115. https://doi.org/10.3390/atmos15010115