Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation
Abstract
1. Introduction
2. Methods
3. Results
3.1. Chamber
3.2. Experimental Method and Procedure
3.3. Light Sources
3.4. Temperature and Humidity
3.5. Measurement Systems
3.6. SOA Yield
3.7. SOA Losses on Chamber-Wall (Wall Loss)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abaje, I.B.; Bello, Y.; Ahmad, S.A. A review of air quality and concentrations of air pollutants in Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 373–379. [Google Scholar] [CrossRef]
- Mitchell, J.F.B.; Johns, T.C.; Gregory, J.M.; Tett, S.F.B. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 1995, 376, 501–504. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Huang, W.; Ling, Z.; Wang, Z.; Wang, X. Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmos. Res. 2022, 274, 106184. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Fröhlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef]
- Jathar, S.H.; Gordon, T.D.; Hennigan, C.J.; Pye, H.O.; Pouliot, G.; Adams, P.J.; Donahue, N.M.; Robinson, A.L. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States. Proc. Natl Acad. Sci. USA 2014, 111, 10473–10478. [Google Scholar] [CrossRef]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, I.; Alfarra, M.R.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801. [Google Scholar] [CrossRef]
- Srivastava, D.; Vu, T.V.; Tong, S.; Shi, Z.; Harrison, R.M. Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. npj Clim. Atmos. Sci. 2022, 5, 22. [Google Scholar] [CrossRef]
- Chu, B.; Chen, T.; Liu, Y.; Ma, Q.; Mu, Y.; Wang, Y.; Ma, J.; Zhang, P.; Liu, J.; Liu, C.; et al. Application of smog chambers in atmospheric process studies. Natl. Sci. Rev. 2022, 9, nwab103. [Google Scholar] [CrossRef]
- Lim, Y.B.; Lee, S.B.; Kim, H.; Kim, J.Y.; Bae, G.N. Review of recent smog chamber studies for secondary organic aerosol. J. Korean Soc. Atmos. Environ. 2016, 32, 131–157. [Google Scholar] [CrossRef]
- Brune, W.H. The Chamber Wall Index for Gas–Wall Interactions in Atmospheric Environmental Enclosures. Environ. Sci. Technol. 2019, 53, 3645–3652. [Google Scholar] [CrossRef]
- Becker, K.H. The European Photoreactor EUPHORE: Design and Technical Development of the European Photoreactor and First Experimental Results: Final Report of the EC-Project: Contract EV5V-CT92-0059: Funding Period, January 1993–December 1995; Institute of Physical Chemistry: Warsaw, Poland, 1996. [Google Scholar]
- Rohrer, F.; Bohn, B.; Brauers, T.; Brüning, D.; Johnen, F.J.; Wahner, A.; Kleffmann, J. Characterisation of the photolytic HONOsource in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 2005, 5, 2189–2201. [Google Scholar] [CrossRef]
- Ren, Y.; Grosselin, B.; Daële, V.; Mellouki, A. Investigation of the reaction of ozone with isoprene, methacrolein and methyl vinyl ketone using the HELIOS chamber. Faraday Discuss. 2017, 200, 289–311. [Google Scholar] [CrossRef]
- Fisseha, R.; Dommen, J.; Sax, M.; Paulsen, D.; Kalberer, M.; Maurer, R.; Höfler, F.; Weingartner, E.; Baltensperger, U. Identification of organic acids in secondary organic aerosol and the corresponding gas phase from chamber experiments. Anal. Chem. 2004, 76, 6535–6540. [Google Scholar] [CrossRef]
- Bahreini, R.; Keywood, M.D.; Ng, N.L.; Varutbangkul, V.; Gao, S.; Flagan, R.C.; Seinfeld, J.H.; Worsnop, D.R.; Jimenez, J.L. Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer. Environ. Sci. Technol. 2005, 39, 5674–5688. [Google Scholar] [CrossRef]
- Carter, W.P.; Cockeriii, D.R., III; Fitz, D.R.; Malkina, I.L.; Bumiller, K.; Sauer, C.G.; Pisano, J.; Bufalino, C.; Song, C. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 2005, 39, 7768–7788. [Google Scholar] [CrossRef]
- Pathak, R.K.; Stanier, C.O.; Donahue, N.M.; Pandis, S.N. Ozonolysis of alpha-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields). J. Geophys. Res. 2007, 112, D03201. [Google Scholar] [CrossRef]
- Loza, C.L.; Chhabra, P.S.; Yee, L.D.; Craven, J.S.; Flagan, R.C.; Seinfeld, J.H. Chemical aging of m-xylene secondary organic aerosol: Laboratory chamber study. Atmos. Chem. Phys. 2012, 12, 151–167. [Google Scholar] [CrossRef]
- Nah, T.; McVay, R.C.; Zhang, X.; Boyd, C.M.; Seinfeld, J.H.; Ng, N.L. Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: A case study with α-pinene ozonolysis. Atmos. Chem. Phys. 2016, 16, 9361–9379. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Kleindienst, T.E.; Edney, E.O.; Cohen, J.B. Aerosol growth in a steady-state, continuous flow chamber: Application to studies of secondary aerosol formation. Aerosol Sci. Technol. 2003, 37, 728–734. [Google Scholar] [CrossRef]
- Lee, A.; Goldstein, A.H.; Kroll, J.H.; Ng, N.L.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. 2006, 111, D17. [Google Scholar] [CrossRef]
- Murphy, S.M.; Sorooshian, A.; Kroll, J.H.; Ng, N.L.; Chhabra, P.; Tong, C.; Surratt, J.D.; Knipping, E.; Flagan, R.C.; Seinfeld, J.H. Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos. Chem. Phys. 2007, 7, 2313–2337. [Google Scholar] [CrossRef]
- Jorga, S.D.; Kaltsonoudis, C.; Liangou, A.; Pandis, S.N. Measurement of formation rates of secondary aerosol in the ambient urban atmosphere using a dual smog chamber system. Environ. Sci. Technol. 2020, 54, 1336–1343. [Google Scholar] [CrossRef]
- Boyd, C.M.; Sanchez, J.; Xu, L.; Eugene, A.J.; Nah, T.; Tuet, W.Y.; Guzman, M.I.; Ng, N.L.; Ng, N.L. Secondary organic aerosol formation from the β-pinene+ NO 3 system: Effect of humidity and peroxy radical fate. Atmos. Chem. Phys. 2015, 15, 7497–7522. [Google Scholar] [CrossRef]
- Nah, T.; McVay, R.C.; Pierce, J.R.; Seinfeld, J.H.; Ng, N.L. Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments. Atmos. Chem. Phys. 2017, 17, 2297–2310. [Google Scholar] [CrossRef]
- Kleindienst, T.E.; Jaoui, M.; Lewandowski, M.; Offenberg, J.H.; Lewis, C.W.; Bhave, P.V.; Edney, E.O. Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ. 2007, 41, 8288–8300. [Google Scholar] [CrossRef]
- Al-Naiema, I.M.; Offenberg, J.H.; Madler, C.J.; Lewandowski, M.; Kettler, J.; Fang, T.; Stone, E.A. Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia. Atmos. Environ. 2020, 223, 117227. [Google Scholar] [CrossRef]
- Hastings, W.P.; Koehler, C.A.; Bailey, E.L.; De Haan, D.O. Secondary organic aerosol formation by glyoxal hydration and oligomer formation: Humidity effects and equilibrium shifts during analysis. Environ. Sci. Technol. 2005, 39, 8728–8735. [Google Scholar] [CrossRef]
- Na, K.; Song, C.; Cockeriii III, D.R. Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ. 2006, 40, 1889–1900. [Google Scholar] [CrossRef]
- Vu, D.; Roth, P.; Berte, T.; Yang, J.; Cocker, D.; Durbin, T.D.; Karavalakis, G.; Asa-Awuku, A. Using a new Mobile Atmospheric Chamber (Mach) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. J. Aerosol Sci. 2019, 133, 1–11. [Google Scholar] [CrossRef]
- Docherty, K.S.; Wu, W.; Lim, Y.B.; Ziemann, P.J. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3. Environ. Sci. Technol. 2005, 39, 4049–4059. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Na, K.; Cocker, D.R. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environ. Sci. Technol. 2005, 39, 3143–3149. [Google Scholar] [CrossRef]
- Jahn, L.G.; Wang, D.S.; Dhulipala, S.V.; Ruiz, L.H. Gas-Phase Chlorine Radical Oxidation of Alkanes: Effects of Structural Branching, NOx, and Relative Humidity Observed during Environmental Chamber Experiments. J. Phys. Chem. A. 2021, 125, 7303–7317. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Ziemba, L.D.; Griffin, R.J. Secondary aerosol formation from the oxidation of toluene by chlorine atoms. Atmos. Environ. 2008, 42, 7348–7359. [Google Scholar] [CrossRef]
- Schuetzle, D.; Rasmussen, R.A. The molecular composition of secondary aerosol particles formed from terpenes. J. Air Pollut. Control Assoc. 1978, 28, 236–240. [Google Scholar] [CrossRef]
- Bejan, I.G.; Olariu, R.I.; Wiesen, P. Secondary organic aerosol formation from nitrophenols photolysis under atmospheric conditions. Atmosphere 2020, 11, 1346. [Google Scholar] [CrossRef]
- Pullinen, I.; Schmitt, S.; Kang, S.; Sarrafzadeh, M.; Schlag, P.; Andres, S.; Kleist, E.; Mentel, T.F.; Rohrer, F.; Kiendler-Scharr, A. Impact of NO x on secondary organic aerosol (SOA) formation from α-pinene and β-pinene photooxidation: The role of highly oxygenated organic nitrates. Atmos. Chem. Phys. 2020, 20, 10125–10147. [Google Scholar] [CrossRef]
- Böge, O.; Mutzel, A.; Iinuma, Y.; Yli-Pirilä, P.; Kahnt, A.; Joutsensaari, J.; Herrmann, H. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene. Atmos. Environ. 2013, 79, 553–560. [Google Scholar] [CrossRef]
- Gatzsche, K.; Iinuma, Y.; Tilgner, A.; Mutzel, A.; Berndt, T.; Wolke, R. Kinetic modeling studies of SOA formation from α-pinene ozonolysis. Atmos. Chem. Phys. 2017, 17, 13187–13211. [Google Scholar] [CrossRef]
- Kamm, S.; Mohler, O.; Naumann, K.H.; Saathoff, H.; Schurath, U. The heterogeneous reaction of ozone with soot aerosol. Atmos. Environ. 1999, 33, 4651–4661. [Google Scholar] [CrossRef]
- Lamkaddam, H.; Gratien, A.; Pangui, E.; Cazaunau, M.; Picquet-Varrault, B.; Doussin, J.F. High-NO x photooxidation of n-dodecane: Temperature dependence of SOA formation. Environ. Sci. Technol. 2017, 51, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, L.; Perraudin, E.; Maurin, N.; Picquet-Varrault, B.; Zheng, W.; Marchand, N.; Temime-Roussel, B.; Monod, A.; Le Person, A.; Bernard, F.; et al. Organic Aerosol Formation from Aromatic Alkene Ozonolysis: Influence of the Precursor Structure on Yield, Chemical Composition, and Mechanism. J. Phys. Chem. A 2019, 123, 1469–1484. [Google Scholar] [CrossRef] [PubMed]
- Henry, F.; Coeur-Tourneur, C.; Ledoux, F.; Tomas, A.; Menu, D. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o-and p-cresol. Atmos. Environ. 2008, 42, 3035–3045. [Google Scholar] [CrossRef]
- Du, M.; Voliotis, A.; Shao, Y.; Wang, Y.; Bannan, T.J.; Pereira, K.L.; Hamilton, J.F.; Percival, C.J.; Alfarra, M.R.; McFiggans, G. Combined application of online FIGAERO-CIMS and offline LC-Orbitrap mass spectrometry (MS) to characterize the chemical composition of secondary organic aerosol (SOA) in smog chamber studies. Atmos. Meas. Tech. 2022, 15, 4385–4406. [Google Scholar] [CrossRef]
- Wang, Y.; Voliotis, A.; Hu, D.; Shao, Y.; Du, M.; Chen, Y.; Kleinheins, J.; Marcolli, C.; Alfarra, M.R.; McFiggans, G. On the evolution of sub-and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors. Atmos. Chem. Phys. 2022, 22, 4149–4166. [Google Scholar] [CrossRef]
- Glowacki, D.; Goddard, A.; Hemavibool, K.; Malkin, T.; Commane, R.; Anderson, F.; Bloss, W.; Heard, D.; Ingham, T.; Pilling, M.; et al. Design of and initial results from a highly instru-mented reactor for atmospheric chemistry (HIRAC). Atmos. Chem. Phys. 2007, 7, 5371–5390. [Google Scholar] [CrossRef]
- Massabó, D.; Danelli, S.G.; Brotto, P.; Comite, A.; Costa, C.; Di Cesare, A.; Doussin, J.F.; Ferraro, F.; Formenti, P.; Gatta, E.; et al. ChAMBRe: A new atmospheric simulation chamber for aerosol modelling and bio-aerosol research. Atmos. Meas. Tech. 2018, 11, 5885–5900. [Google Scholar] [CrossRef]
- Kristensen, K.; Jensen, L.N.; Quéléver, L.L.; Christiansen, S.; Rosati, B.; Elm, J.; Teiwes, R.; Pedersen, H.B.; Glasius, M.; Bilde, M.; et al. The Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA): Particle formation, organic acids, and dimer esters from α-pinene ozonolysis at different temperatures. Atmos. Chem. Phys. 2020, 20, 12549–12567. [Google Scholar] [CrossRef]
- Hartikainen, A.; Yli-Pirilä, P.; Tiitta, P.; Leskinen, A.; Kortelainen, M.; Orasche, J.; Schnelle-Kreis, J.; Lehtinen, K.E.J.; Zimmermann, R.; Sippula, O.; et al. Volatile organic compounds from logwood combustion: Emissions and transformation under dark and photochemical aging conditions in a smog chamber. Environ. Sci. Technol. 2018, 52, 4979–4988. [Google Scholar] [CrossRef]
- Nordin, E.Z.; Eriksson, A.C.; Roldin, P.; Nilsson, P.T.; Carlsson, J.E.; Kajos, M.K.; Hellén, H.; Wittbom, C.; Rissler, J.; Pagels, J.H.; et al. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmos. Chem. Phys. 2013, 13, 6101–6116. [Google Scholar] [CrossRef]
- Keller, A.; Burtscher, H. A continuous photo-oxidation flow reactor for a defined measurement of the SOA formation potential of wood burning emissions. J. Aerosol Sci. 2012, 49, 9–20. [Google Scholar] [CrossRef]
- Stefenelli, G.; Jiang, J.; Bertrand, A.; Bruns, E.A.; Pieber, S.M.; Baltensperger, U.; Marchand, N.; Aksoyoglu, S.; Prévôt, A.S.H.; El Haddad, I.; et al. Secondary organic aerosol formation from smoldering and flaming combustion of biomass: A box model parametrization based on volatility basis set. Atmos. Chem. Phys. 2019, 19, 11461–11484. [Google Scholar] [CrossRef]
- Paulsen, D.; Dommen, J.; Kalberer, M.; Prévôt, A.S.; Richter, R.; Sax, M.; Steinbacher, M.; Weingartner, E.; Baltensperger, U. Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry and physics. Environ. Sci. Technol. 2005, 39, 2668–2678. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Liu, Y.; Zhang, Y.; Feng, Z.; Zhan, J.; Hua, C.; Ma, L.; Guo, Y.; Zhang, Y.; Zhou, W.; et al. A new type of quartz smog chamber: Design and characterization. Environ. Sci. Technol. 2022, 56, 2181–2190. [Google Scholar] [CrossRef]
- Deng, W.; Liu, T.; Zhang, Y.; Situ, S.; Hu, Q.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Wang, X.; et al. Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix. Atmos. Environ. 2017, 150, 67–76. [Google Scholar] [CrossRef]
- Deng, W.; Fang, Z.; Wang, Z.; Zhu, M.; Zhang, Y.; Tang, M.; Song, W.; Lowther, S.; Huang, Z.; Jones, K.; et al. Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode. Sci. Total Environ. 2020, 699, 134357. [Google Scholar] [CrossRef]
- Wang, S.; Tsona, N.T.; Du, L. Effect of NOx on secondary organic aerosol formation from the photochemical transformation of allyl acetate. Atmos. Environ. 2021, 255, 118426. [Google Scholar] [CrossRef]
- Qi, X.; Zhu, S.; Zhu, C.; Hu, J.; Lou, S.; Xu, L.; Dong, J.; Cheng, P. Smog chamber study of the effects of NOx and NH3 on the formation of secondary organic aerosols and optical properties from photo-oxidation of toluene. Sci. Total Environ. 2020, 727, 138632. [Google Scholar] [CrossRef]
- Chen, L.; Bao, Z.; Wu, X.; Li, K.; Han, L.; Zhao, X.; Zhang, X.; Wang, Z.; Azzi, M.; Cen, K. The effects of humidity and ammonia on the chemical composition of secondary aerosols from toluene/NOx photo-oxidation. Sci. Total Environ. 2020, 728, 138671. [Google Scholar] [CrossRef] [PubMed]
- Babar, Z.B.; Park, J.H.; Kang, J.; Lim, H.J. Characterization of a smog chamber for studying formation and physicochemical properties of secondary organic aerosol. Aerosol Air Qual. Res. 2016, 16, 3102–3113. [Google Scholar] [CrossRef]
- Pandis, S.N.; Paulson, S.E.; Seinfeld, J.H.; Flagan, R.C. Aerosol formation in the photooxidation of isoprene and β-pinene. Atmos. Environ. A Gen. Top. 1991, 25, 997–1008. [Google Scholar] [CrossRef]
- Odum, J.R.; Jungkamp, T.P.W.; Griffin, R.J.; Flagan, R.C.; Seinfeld, J.H. The atmospheric aerosol-forming potential of whole gasoline vapor. Science 1997, 276, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Jang, M.; Zhang, T.; Madhu, A.; Han, S. Simulation of monoterpene SOA formation by multiphase reactions using explicit mechanisms. ACS Earth Space Chem. 2021, 5, 1455–1467. [Google Scholar] [CrossRef]
- Madhu, A.; Jang, M.; Deacon, D. Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes. Atmos. Chem. Phys. 2023, 23, 1661–1675. [Google Scholar] [CrossRef]
- Kamens, R.; Jang, M.; Chien, C.J.; Leach, K. Aerosol formation from the reaction of α-pinene and ozone using a gas-phase kinetics-aerosol partitioning model. Environ. Sci. Technol. 1999, 33, 1430–1438. [Google Scholar] [CrossRef]
- Jang, M.; Kamens, R.M. Newly characterized products and composition of secondary aerosols from the reaction of α-pinene with ozone. Atmos. Environ. 1999, 33, 459–474. [Google Scholar] [CrossRef]
- Jang, M.; Kamens, R.M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ. Sci. Technol. 2001, 35, 3626–3639. [Google Scholar] [CrossRef]
- Leungsakul, S.; Jaoui, M.; Kamens, R.M. Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of d-limonene with ozone. Environ. Sci. Technol. 2005, 39, 9583–9594. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Parikh, H.M.; Chen, E.H.; Rattanavaraha, W.; Rosen, E.P.; Wang, W.; Kamens, R.M. Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: Water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882–3890. [Google Scholar] [CrossRef]
- Emanuelsson, E.U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Mentel, T.F. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties. Atmos. Chem. Phys. 2013, 13, 2837–2855. [Google Scholar] [CrossRef]
- Brownwood, B.; Turdziladze, A.; Hohaus, T.; Wu, R.; Mentel, T.F.; Carlsson, P.T.; Tsiligiannis, E.; Hallquist, M.; Andres, S.; Fry, J.L.; et al. Gas-particle partitioning and SOA yields of organonitrate products from NO3-initiated oxidation of isoprene under varied chemical regimes. ACS Earth Space Chem. 2021, 5, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Spittler, M.; Barnes, I.; Bejan, I.; Brockmann, K.J.; Benter, T.; Wirtz, K. Reactions of NO3 radicals with limonene and α-pinene: Product and SOA formation. Atmos. Environ. 2006, 40, 116–127. [Google Scholar] [CrossRef]
- Couvidat, F.; Vivanco, M.G.; Bessagnet, B. Simulating secondary organic aerosol from anthropogenic and biogenic precursors: Comparison to outdoor chamber experiments, effect of oligomerization on SOA formation and reactive uptake of aldehydes. Atmos. Chem. Phys. 2018, 18, 15743–15766. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Wang, X.; Wang, W.; Ge, M.; Zhang, H.; Zhang, X.; Li, K.; Chen, Y.; Wu, Z.; et al. A large-scale outdoor atmospheric simulation smog chamber for studying atmospheric photochemical processes: Characterization and preliminary application. J. Environ. Sci. 2021, 102, 185–197. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M. Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols: An environmental chamber study. Atmos. Environ. 2011, 45, 4015–4024. [Google Scholar] [CrossRef]
- Miracolo, M.A.; Hennigan, C.J.; Ranjan, M.; Nguyen, N.T.; Gordon, T.D.; Lipsky, E.M.; Presto, A.A.; Donahue, N.M.; Robinson, A.L. Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber. Atmos. Chem. Phys. 2011, 11, 4135–4147. [Google Scholar] [CrossRef]
- Kaltsonoudis, C.; Jorga, S.D.; Louvaris, E.; Florou, K.; Pandis, S.N. A portable dual-smog-chamber system for atmospheric aerosol field studies. Atmos. Meas. Tech. 2019, 12, 2733–2743. [Google Scholar] [CrossRef]
- Jorga, S.D.; Florou, K.; Kaltsonoudis, C.; Kodros, J.K.; Vasilakopoulou, C.; Cirtog, M.; Fouqueau, A.; Picquet-Varrault, B.; Nenes, A.; Pandis, S.N. Nighttime chemistry of biomass burning emissions in urban areas: A dual mobile chamber study. Atmos. Chem. Phys. 2021, 21, 15337–15349. [Google Scholar] [CrossRef]
- Platt, S.M.; El Haddad, I.; Zardini, A.A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J.G.; Temime-Roussel, B.; Marchand, N.; Prévôt, A.S. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos. Chem. Phys. 2013, 13, 9141–9158. [Google Scholar] [CrossRef]
- Ezell, M.J.; Johnson, S.N.; Yu, Y.; Perraud, V.; Bruns, E.A.; Alexander, M.L.; Zelenyuk, A.; Dabdub, D.; Finlayson-Pitts, B.J. A new aerosol flow system for photochemical and thermal studies of tropospheric aerosols. Aerosol Sci. Technol. 2010, 44, 329–338. [Google Scholar] [CrossRef]
- König, U.; Nitschke, M.; Pilz, M.; Simon, F.; Arnhold, C.; Werner, C. Stability and ageing of plasma treated poly(tetrafluoroethylene) surfaces. Colloids Surf. B Biointerfaces 2002, 25, 313–324. [Google Scholar] [CrossRef]
- Everett, M.L.; Hoflund, G.B. Chemical alteration of poly(tetrafluoroethylene) TFE Teflon induced by exposure to electrons and inert-gas ions. J. Phys. Chem. B. 2005, 109, 16676–16683. [Google Scholar] [CrossRef]
- Kim, S.R. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000, 77, 1913–1920. [Google Scholar] [CrossRef]
- Von Hessberg, C.; Von Hessberg, P.; Pöschl, U.; Bilde, M.; Nielsen, O.J.; Moortgat, G.K. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene. Atmos. Chem. Phys. 2009, 9, 3583–3599. [Google Scholar] [CrossRef]
- Chou, A.; Li, Z.; Tao, F.M. Density functional studies of the formation of nitrous acid from the reaction of nitrogen dioxide and water vapor. J. Phys. Chem. A 1999, 103, 7848–7855. [Google Scholar] [CrossRef]
- Babar, Z.B.; Park, J.H.; Lim, H.J. Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor. Atmos. Environ. 2017, 164, 71–84. [Google Scholar] [CrossRef]
- Cocker, D.R., III; Clegg, S.L.; Flagan, R.C.; Seinfeld, J.H. The effect of water on gas–particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system. Atmos. Environ. 2001, 35, 6049–6072. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Erdakos, G.B.; Asher, W.E.; Pankow, J.F. Modeling the formation of secondary organic aerosol (SOA): 2. The predicted effects of relative humidity on aerosol formation in the α-pinene-, β-pinene-, sabinene-, Δ3-carene-, and cyclohexene-ozone systems. Environ. Sci. Technol. 2001, 35, 1806–1817. [Google Scholar] [CrossRef]
- Doussin, J.-F.; Fuchs, H.; Kiendler-Scharr, A.; Seakins, P.; Wenger, J. A Practical Guide to Atmospheric Simulation Chambers; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Rodrigue, J.; Dhaniyala, S.; Ranjan, M.; Hopke, P.K. Performance comparison of scanning electrical mobility spectrometers. Aerosol Sci. Technol. 2007, 41, 360–368. [Google Scholar] [CrossRef]
- DeCarlo, P.F.; Slowik, J.G.; Worsnop, D.R.; Davidovits, P.; Jimenez, J.L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 2004, 38, 1185–1205. [Google Scholar] [CrossRef]
- Malloy, Q.G.J.; Nakao, S.; Qi, L.; Austin, R.; Stothers, C.; Hagino, H.; Cocker, D.R., III. Real-time aerosol density determination utilizing a modified scanning mobility particle sizer—Aerosol particle mass analyzer system. Aerosol Sci. Technol. 2009, 43, 673–678. [Google Scholar] [CrossRef]
- Carlton, A.G.; Wiedinmyer, C.; Kroll, J.H. A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9, 4987–5005. [Google Scholar] [CrossRef]
- Grosjean, D. Wall loss of gaseous pollutants in outdoor Teflon chambers. Environ. Sci. Technol. 1985, 19, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- McMurry, P.H.; Grosjean, D. Gas and aerosol wall losses in Teflon film smog chambers. Environ. Sci. Technol. 1985, 19, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, A.; Ziemann, P.J. Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements. Aerosol Sci. Technol. 2010, 44, 881–892. [Google Scholar] [CrossRef]
- Weitkamp, E.A.; Sage, A.M.; Pierce, J.R.; Donahue, N.M.; Robinson, A.L. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ. Sci. Technol. 2007, 41, 6969–6975. [Google Scholar] [CrossRef]
- Weitkamp, E.A. Laboratory Studies of Oxidation of Primary Emissions: Oxidation of Organic Molecular Markers and Secondary Organic Aerosol Production. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2007. [Google Scholar]
Location | Country | Institute (Chamber) | Reactor Size | Wall Material | Light Source | Reference |
---|---|---|---|---|---|---|
Indoor | USA | Caltech | 11.3 m3 | TFE | Fluorescent bulb | [24] |
Indoor | USA | Caltech | Dual 28 m3 | FEP | Blacklight lamp | [19,25,26] |
Indoor | USA | Carnegie Mellon U. | Dual 1.5 m3 | PTFE | UV lamp | [27] |
Indoor | USA | Georgia Institute of Technology | Dual 12 m3 | FEP | Blacklight lamp | [23,28,29] |
Indoor | USA | National Exposure Research Lab | 14.5 m3 | PTFE | Fluorescent bulb | [30,31] |
Indoor | USA | U. of San Diego | 0.3 m3 | Tedlar/Teflon | N/A | [32] |
Indoor | USA | UC Riverside | 18 m3 | Teflon | Dark | [33] |
Indoor | USA | UC Riverside | 30 m3 | FEP | Blacklight lamp | [34] |
Indoor | USA | UC Riverside | 7 m3 | PTFE | Dark | [35] |
Indoor | USA | UC Riverside | Dual 90 m3 | FEP | Argon arc lamp, Blacklight lamp | [20,36] |
Indoor | USA | UT Austin | 10 m3 | Teflon | Blacklight lamp | [37] |
Indoor | USA | U. of New Hampshire | 6 m3 | FEP | Blacklight lamp | [38] |
Indoor | USA | Washington State U. | 2 m3 | PVF | Blacklight lamp | [39] |
Indoor | Germany | U. of Wuppertal (QUAREC) | 1.08 m3 | Quartz | Blacklight lamp | [40] |
Indoor | Germany | Institute for Energy and Climate Research | 1.45 m3 | Teflon | UV lamp | [41] |
Indoor | Germany | TROPOS (LEAK) | 19 m3 | Teflon | Blacklight lamp | [42,43] |
Indoor | Germany | KIT (AIDA) | 84 m3 | Aluminium | LED | [44] * |
Indoor | France | LISA (CESAM) | 4.2 m3 | Stainless steel | Xenon arc lamp | [45,46] |
Indoor | France | ICARE | 7.3 m3 | FEP | N/A | [46] |
Indoor | France | U. of the Littoral Opal Coast | 8 m3 | Altuglas | Dark, Fluorescence tube | [47] |
Indoor | UK | Manchester U. (MAC) | 18 m3 | FEP | Xenon arc lamp | [48,49] |
Indoor | UK | U. of Leeds (HIRAC) | 2 m3 | Stainless steel | Blacklight lamp | [50] |
Indoor | Ireland | U. College Cork (IASC) | 27 m3 | FEP | UV lamp | |
Indoor | Italy | INFN (CHAMBRe) | 2.2 m3 | Stainless steel | UV lamp | [51] * |
Indoor | Denmark | Aarhus University Research on Aerosol | 5 m3 | Teflon | UV lamp | [52] |
Indoor | Finland | U. of Eastern Finland (ILMARI) | 29 m3 | Teflon | Blacklight lamp | [53] |
Indoor | Romania | Alexandru Ioan Cuza U. (CERNESIM) | 0.76 m3 | Quartz | Blacklight lamp | |
Indoor | Sweden | Lund U. | 6 m3 | FEP | UV lamp | [54] |
Indoor | Switzerland | U. of Applied Sciences | 76 mL | Quartz | Mercury lamp, UV lamp, Halogen lamp | [55] |
Indoor | Switzerland | Paul Scherrer Institute (PACS) | 5.5 m3 | Teflon | UV lamp | [56] |
Indoor | Switzerland | Paul Scherrer Institute (PACS) | 27 m3 | FEP | Xenon arc lamp | [18,57] |
Indoor | China | Beijing U. | 10 m3 | Quartz | Dark/UV lamp | [58] |
Indoor | China | Chinese Academy of Sciences | 30 m3 | FEP | Blacklight lamp | [59,60] |
Indoor | China | Shandong Jianzhu U. | 1 m3 | FEP | Blacklight lamp | [61] |
Indoor | China | Shanghai U. | 1.2 m3 | Teflon | Blacklight lamp | [62] |
Indoor | China | Zhejiang U. | 3 m3 | Teflon | Blacklight lamp | [63] |
Indoor | Republic of Korea | Kyungpook National U. | 7 m3 | FEP | UV lamp | [64] |
Outdoor | USA | Caltech | 60 m3 | PTFE | Sun | [65,66] |
Outdoor | USA | U. of Florida (UF-APHOR) | Dual 52 m3 | FEP | Sun | [67,68] |
Outdoor | USA | U. of North Carolina | 190 m3 | Teflon | Dark/Sun | [69,70,71] |
Outdoor | USA | U. of North Carolina | Dual 270 m3 | Teflon | Sun | [72,73] |
Outdoor | Germany | Forschungszentrum Jülich (SAPHIR) | 270 m3 | FEP | Sun | [74,75] |
Outdoor | Spain | CEAM (EUPHORE) | Dual 200 m3 | Teflon | Sun | [46,76,77] |
Outdoor | France | ICARE (HELIOS) | 90 m3 | FEP | Sun | [17] |
Outdoor | China | Chinese Research Academy of Environmental Sciences | 56 m3 | FEP | Sun | [78] |
Outdoor | India | Indian Institute of Technology Kanpur | 12.5 m3 | FEP | Sun | [79] |
Mobile | USA | Carnegie Mellon U. | 7 m3 | Teflon | Blacklight lamp/Sun | [80] |
Mobile | Greece | Foundation for Research and Technology Hellas (FORTH) | Dual 1.5 m3 | PTFE | UV lamp/Sun | [81,82] |
Mobile | Switzerland | Paul Scherrer Institute (PACS) | 9 m3 | FEP | UV lamp | [83] |
First Author | Year | Light Intensity | Light Spectrum | Ref. |
---|---|---|---|---|
Al-Naiema | 2020 | NO2 photolysis rate (0.34/min) | Peak wavelength (300–400 nm) | [31] |
Babar | 2016 | NO2 photolysis rate (0.17/min) | Full spectral distribution | [64] |
Bejan | 2020 | - | Peak wavelength (360 nm) | [40] |
Boyd | 2015 | NO2 photolysis rate (0.28/min) | Peak wavelength (354 nm) | [28] |
Cai | 2008 | - | Peak wavelength (365 nm) | [38] |
Carter | 2005 | NO2 photolysis rate (0.26/min) | Full spectral distribution | [20] |
Chen | 2020 | NO2 photolysis rate (0.38/min) | - | [63] |
Deng | 2020 | NO2 photolysis rate (0.25/min) | - | [60] |
Du | 2022 | NO2 photolysis rate (0.11~0.18/min) | - | [48] |
Hartikainen | 2018 | - | Peak wavelength (350 nm) | [53] |
Jahn | 2021 | - | Peak wavelength (354 nm) | [37] |
Kaltsonoudis | 2019 | NO2 photolysis rate (0.1/min) | Peak wavelength (350–400 nm) | [81] |
Keller | 2012 | - | Peak wavelength (254 nm) | [55] |
Kleindienst | 2007 | - | Peak wavelength (300–400 nm) | [30] |
Kristensen | 2020 | NO2 photolysis rate (0.2/min) | Peak wavelength (350 nm) | [52] |
Lee | 2006 | - | Peak wavelength (354 nm) | [25] |
Ma | 2022 | NO2 photolysis rate (0.40/min) | Peak wavelength (371 nm) | [58] |
Murphy | 2007 | - | Peak wavelength (354 nm) | [26] |
Nordin | 2013 | NO2 photolysis rate (0.2/min) | Peak wavelength (350 nm) | [54] |
Paulsen | 2005 | NO2 photolysis rate (0.12/min) | Note 1 | [57] |
Platt | 2013 | NO2 photolysis rate 0.24 /min | Peak wavelength (368 nm) | [83] |
Pullinen | 2020 | - | Peak wavelength (365 nm) | [41] |
Qi | 2020 | NO2 photolysis rate (0.17/min) | Peak wavelength (365 nm) | [62] |
Schuetzle | 1978 | Note 2 | - | [39] |
Seinfeld | 2003 | - | Peak wavelength (244 nm) | [24] |
Stefenelli | 2019 | - | Peak wavelength (400 nm) | [56] |
Vu | 2019 | NO2 photolysis rate (0.23/min) | Peak wavelength (365 nm) | [34] |
Wang | 2021 | NO2 photolysis rate (0.117/min) | - | [61] |
Location | First Author | Year | Temperature | Humidity | Ref. |
---|---|---|---|---|---|
Indoor | Al-Naiema | 2020 | - | 30% | [31] |
Babar | 2016 | 24 °C | <3% | [64] | |
Bahreini | 2005 | 20 ± 2 °C | <10%, 55 ± 5% | [19] | |
Bejan | 2020 | 10–40 °C | - | [40] | |
Boyd | 2015 | - | <2%, 50%, 70% | [28] | |
Cai | 2008 | 24–27 °C | - | [38] | |
Carter | 2005 | 27–32 °C | - | [20] | |
Chen | 2020 | 37 °C | 7%, 63–68% | [63] | |
Deng | 2017 | 24.6–26.9 °C | 50.5–63.7% | [59] | |
Deng | 2020 | 25 ± 1 °C | 2.7–10.3% | [60] | |
Du | 2022 | 25 °C | 50% | [48] | |
Docherty | 2005 | 25 ± 3 °C | <0.5% | [35] | |
Fisseha | 2004 | 20 °C | 40–50% | [18] | |
Gatzsche | 2017 | - | <55% | [43] | |
Hastings | 2005 | 20 °C | 22–44% | [32] | |
Hartikainen | 2018 | 18 ± 2 °C | 60 ± 5% | [53] | |
Henry | 2008 | 21 ± 2 °C | 6–10% | [47] | |
Jahn | 2021 | - | <5%, 40–55% | [37] | |
Jorga | 2020 | 23–25 °C | 20–70% | [27] | |
Keller | 2012 | 25–35 °C | <4%, 21–24% | [55] | |
Kristensen | 2020 | −14.5–20.3 °C | 0–19.8% | [52] | |
Lamkaddam | 2017 | 50 °C | <1% | [45] | |
Lee | 2006 | 20–22 °C | 40–56% | [25] | |
Ma | 2022 | 15–30 ± 1 °C | <10% | [58] | |
Murphy | 2007 | 20–25 °C | <10% | [26] | |
Na | 2006 | 20 ± 1 °C | <2%, 50–60% | [33] | |
Nah | 2016 | 25 °C | <5% | [23] | |
Nah | 2017 | 25 °C | <5% | [29] | |
Nordin | 2013 | 22 ± 2 °C | 3–10% | [54] | |
Paulsen | 2005 | 23.5 ± 1 °C | 50% | [57] | |
Qi | 2020 | 25 ± 2 °C | <20% | [62] | |
Song | 2005 | 27 °C | <2% | [36] | |
Stefenelli | 2019 | −10, 2, 15 °C | 50% | [56] | |
Vu | 2019 | 25, 30 °C | <7% | [34] | |
Wang | 2021 | 25 ± 3 °C | 29 ± 3% | [61] | |
Wang | 2022 | 25 ± 2 °C | 50 ± 5% | [49] | |
Outdoor | Behera | 2011 | 35.8 ± 5.7 °C | 58.3 ± 17.5% | [79] |
Couvidat | 2018 | 21–36 °C | 0.4–37% | [77] | |
Jang | 1999 | −5–24 °C | 55–100% | [70] | |
Jang | 2001 | 29–31 °C | 34–38% | [71] | |
Kamens | 1999 | 6–23 °C | 55–100% | [69] | |
Leungsakul | 2005 | 8–40 °C | - | [72] | |
Li | 2021 | 2–44 °C | <1% | [78] | |
Madhu | 2023 | 4–52 °C | 12–99% | [68] | |
Zhou | 2011 | 2–40 °C | 9–98% | [73] | |
Mobile | Jorga | 2021 | 13–24 °C | 30–45% | [82] |
Miracolo | 2011 | 23 ± 2.5 °C | 14.7 ± 3.8% | [80] | |
Platt | 2013 | 22 °C | - | [83] |
Category | Pollutant | Basis for Detection | Equipment | Typical Result |
---|---|---|---|---|
General pollutant detector | Gas | Surface affinity (SA) | GC-ECD | Nitrate concentration |
GC-FID | Hydrocarbon concentration | |||
GC-PID | Hydrocarbon concentration | |||
Mass | ESI-MS, LDI-MS, MS, PTR-MS, SPI-MS, CI-MS | Mass spectrum of gas-phase oxidation product | ||
SA and mass | GC-MS, GC-MSD | Mass spectrum of gas-phase oxidation product | ||
Ion | Ion affinity | IC, PILS-IC | Ion concentration | |
Ion affinity and mass | IC-MS | Mass spectrum of ion oxidation product | ||
Particle | N/A | CPC | Count of SOA | |
Size | EAA, SEMS (DMA-CPC), SMPS (DMA-CPC) | Size spectrum of SOA | ||
Mass | AMS | Mass spectrum of SOA | ||
Size and mass | APM-SMPS | Density spectrum of SOA | ||
Light absorption | FTIR | Infrared absorption spectrum of SOA | ||
Specific pollutant detector | NOx | - | NOx analyzer | NOx concentration |
O3 | - | O3 analyzer | O3 concentration | |
CO, CO2 | - | CO, CO2 analyzer | CO, CO2 concentration | |
SO2 | - | SO2 analyzer | SO2 concentration | |
NH3 | - | NH3 analyzer | NH3 concentration |
First Author | Year | Gas | Ion | Particle | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Detector | MS | Hybrid | Detector | Hybrid | Sizer | MS | Hybrid | FTIR | |||
Al-Naiema | 2020 | GC-FID | IC | [31] | |||||||
Babar | 2016 | GC-PID | SMPS | [64] | |||||||
Bahreini | 2005 | GC-FID | SEMS | AMS | [19] | ||||||
Behera | 2011 | [79] | |||||||||
Bejan | 2020 | SMPS | FTIR | [40] | |||||||
Boyd | 2015 | GC-FID | CI-MS | SMPS | AMS | [28] | |||||
Brownwood | 2021 | CI-MS | SMPS | AMS | [75] | ||||||
Cai | 2008 | GC-FID | SMPS | AMS | [38] | ||||||
Carter | 2005 | GC-FID | SEMS | [20] | |||||||
Couvidat | 2018 | SMPS | [77] | ||||||||
Chen | 2020 | GC-MS | SMPS | AMS | [63] | ||||||
Deng | 2017 | GC-FID | PTR-MS | GC-MS | SMPS | AMS | [59] | ||||
Deng | 2020 | GC-FID | PTR-MS | GC-MS | SMPS | AMS | [60] | ||||
Du | 2022 | CI-MS | [48] | ||||||||
Docherty | 2005 | GC-FID | SMPS | AMS | [35] | ||||||
Emanuelsson | 2013 | PTR-MS | SMPS | [74] | |||||||
Fisseha | 2004 | PTR-MS | GC-MS | IC-MS | SMPS | AMS | [18] | ||||
Gatzsche | 2017 | PTR-MS | SMPS | [43] | |||||||
Hastings | 2005 | ESI-MS | GC-MS | SMPS | [32] | ||||||
Hartikainen | 2018 | PTR-MS | GC-MS | SMPS | AMS | [53] | |||||
Henry | 2008 | GC-FID | SMPS | [47] | |||||||
Jahn | 2021 | CI-MS | SEMS | [37] | |||||||
Jang | 1999 | GC-MS | FTIR | [70] | |||||||
Jang | 2001 | GC-MS | FTIR | [71] | |||||||
Jorga | 2020 | PTR-MS | SMPS | AMS | [27] | ||||||
Jorga | 2021 | PTR-MS | SMPS | AMS | [82] | ||||||
Kaltsonoudis | 2019 | PTR-MS | SMPS | AMS | [81] | ||||||
Kamens | 1999 | GC-FID | EAA | [69] | |||||||
Keller | 2012 | SMPS | [55] | ||||||||
Kleindienst | 2007 | GC-MS | [30] | ||||||||
Kristensen | 2020 | GC-FID | PTR-MS | SMPS | [52] | ||||||
Lamkaddam | 2017 | PTR-MS | SMPS | FTIR | [45] | ||||||
Lee | 2006 | GC-FID | PTR-MS | [25] | |||||||
Leungsakul | 2005 | GC-ECD | SMPS | FTIR | [72] | ||||||
Li | 2021 | GC-MS | SMPS | FTIR | [78] | ||||||
Ma | 2022 | SPI-MS, PTR-MS | SMPS | [58] | |||||||
Madhu | 2023 | GC-FID | PILS-IC | SMPS | [68] | ||||||
Miracolo | 2011 | GC-MS | SMPS | AMS | [80] | ||||||
Murphy | 2007 | LDI-MS | PILS-IC | DMA | AMS | [26] | |||||
Na | 2006 | GC-FID | SEMS | [33] | |||||||
Nah | 2016 | GC-FID | SMPS | AMS | [23] | ||||||
Nah | 2017 | GC-FID | SMPS | AMS | [29] | ||||||
Nordin | 2013 | PTR-MS | GC-MS | SMPS | AMS | [54] | |||||
Odum | 1997 | GC * | SEMS | [66] | |||||||
Pandis | 1991 | GC-FID | GC-MS | SEMS | [65] | ||||||
Paulsen | 2005 | GC-FID | LDI-MS, PTR-MS | GC-MS | IC | IC-MS | SMPS | FTIR | [57] | ||
Platt | 2013 | SMPS | FTIR | [83] | |||||||
Pullinen | 2020 | PTR-MS | GC-MS | AMS | [41] | ||||||
Qi | 2020 | SPI-MS | SMPS | AMS | [62] | ||||||
Schuetzle | 1978 | MS | [39] | ||||||||
Seinfeld | 2003 | GC-FID | SMPS | [24] | |||||||
Song | 2005 | GC-FID | SMPS | [36] | |||||||
Stefenelli | 2019 | PTR-MS | GC-MS | SMPS | AMS | [56] | |||||
Vu | 2019 | SMPS | AMS | APM-SMPS | [34] | ||||||
Wang | 2021 | GC-FID | GC-MS | SMPS | [61] | ||||||
Wang | 2022 | AMS | [49] | ||||||||
Yu | 2021 | GC-FID | PILS-IC | SMPS | FTIR | [67] | |||||
Zhou | 2011 | SMPS | [73] |
First Author | Year | Density for SOA Yield Calculation | Ref. |
---|---|---|---|
Babar | 2016 | 1 g/cm3 (assumed) | [64] |
Bahreini | 2005 | 0.64–1.45 g/cm3 (measured) | [19] |
Cai | 2008 | 1 g/cm3 (assumed) | [38] |
Chen | 2020 | 1.35 g/cm3 (assumed) | [63] |
Deng | 2017 | 1.4 g/cm3 (assumed) | [59] |
Deng | 2020 | 1 g/cm3 (assumed) | [60] |
Docherty | 2005 | 1 g/cm3 (assumed) | [35] |
Emanuelsson | 2013 | 1.4 g/m3 (assumed) | [74] |
Fisseha | 2004 | 1.38 g/m3 (measured) | [18] |
Gatzsche | 2017 | 1 g/cm3 (measured) | [43] |
Henry | 2008 | 1.4 g/cm3 (assumed) | [47] |
Jorga | 2020 | 1.25–1.35 g/cm3 (measured) | [27] |
Kristensen | 2020 | 1.4 g/m3 (assumed) | [52] |
Lee | 2006 | 1.25 g/cm3 (assumed) | [25] |
Leungsakul | 2005 | 1 g/cm3 (assumed) | [72] |
Ma | 2022 | 1.3–1.45 g/cm3 (assumed) | [58] |
Madhu | 2023 | 1.2 g/cm3 (assumed) | [68] |
Miracolo | 2011 | 1.1 g/m3 (measured) | [80] |
Murphy | 2007 | 1–1.1 g/cm3 (measured) | [26] |
Na | 2006 | 1 g/cm3 (assumed) | [33] |
Nah | 2016 | 1.37–1.39 g/cm3 (measured) | [23] |
Nah | 2017 | 1.37 g/cm3 (measured) | [29] |
Odum | 1997 | 1 g/cm3 (assumed) | [66] |
Pandis | 1991 | 1.4 g/cm3 (assumed) | [65] |
Paulsen | 2005 | 1 g/cm3 (assumed) | [57] |
Qi | 2020 | 1.4 g/cm3 (assumed) | [62] |
Song | 2005 | 1 g/cm3 (assumed) | [36] |
Wang | 2021 | 1.4 g/cm3 (assumed) | [61] |
Wang | 2022 | 1.4 g/cm3 (assumed) | [49] |
Yu | 2021 | 1.38 g/cm3 (measured) | [67] |
Zhou | 2011 | 1 g/cm3 (assumed) | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kang, D.; Jung, H.Y.; Jeon, J.; Lee, J.Y. Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation. Atmosphere 2024, 15, 115. https://doi.org/10.3390/atmos15010115
Kim H, Kang D, Jung HY, Jeon J, Lee JY. Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation. Atmosphere. 2024; 15(1):115. https://doi.org/10.3390/atmos15010115
Chicago/Turabian StyleKim, Hyun, Dahyun Kang, Heon Young Jung, Jongho Jeon, and Jae Young Lee. 2024. "Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation" Atmosphere 15, no. 1: 115. https://doi.org/10.3390/atmos15010115
APA StyleKim, H., Kang, D., Jung, H. Y., Jeon, J., & Lee, J. Y. (2024). Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation. Atmosphere, 15(1), 115. https://doi.org/10.3390/atmos15010115