The Behavior of Diurnal Temperature Range (DTR) and Annual Temperature Range (ATR) in the Urban Environment: A Case of Zagreb Grič, Croatia
Abstract
:1. Introduction
2. Materials and Methods
Analyzed Location and Used Materials
3. Results and Discussion
3.1. Analysis of Series of Annual Values of Temperature Indices, Precipitation, and DTR
3.2. Analysis of Variations of Monthly DTRs
3.3. Analysis of Variations of Daily DTRs
3.4. Analysis of Variations of Annual ATRs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPPC: Genève, Suisse, 2007; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf (accessed on 20 June 2022).
- Briga, M.; Verhulst, S. Large diurnal temperature range increases bird sensitivity to climate change. Sci. Rep. 2015, 5, 16600. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Gutt, J. Impacts of climate variability and change on (marine) animals: Physiological underpinnings and evolutionary consequences. Integr. Comp. Biol. 2016, 56, 31–44. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Genève, Suisse, 2014; Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 20 June 2022).
- Liu, J.; Feng, X.; Gu, X.; Zhang, J.; Slater, L.J.; Kong, D. Detection and attribution of human influence on the global diurnal temperature range decline. Geophys. Res. Lett. 2022, 49, e2021GL097155. [Google Scholar] [CrossRef]
- Lee, M.; Shi, L.; Zanobetti, A.; Schwartz, J.D. Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environ. Res. 2016, 151, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, S.; Hu, Y.; Yue, M.; Zhang, T.; Liu, Y.; Tian, J.; Shang, K. Impact of ambient temperature on morbidity and mortality: An overview of reviews. Sci. Total Environ. 2017, 586, 241–254. [Google Scholar] [CrossRef]
- Zaninović, K. Limits of warm and cold bioclimatic stress in different climatic regions. Theor. Appl. Clim. 1992, 45, 65–70. [Google Scholar] [CrossRef]
- Zaninović, K.; Matzarakis, A. Impact of heat waves on mortality in Croatia. Int. J. Biometeorol. 2013, 58, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, C.; Yang, J.; Zhang, L.; Cui, F. Diurnal temperature range in relation to daily mortality and years of life lost in Wuhan, China. Int. J. Environ. Res. Public Health 2017, 14, 891. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Luo, M.; Yang, H.; Xiao, S.; Huang, X.; Ou, Y.; Zhang, Y.; Duan, X.; Hu, W.; et al. Association of diurnal temperature range with daily hospitalization for exacerbation of chronic respiratory diseases in 21 cities, China. Respir. Res. 2020, 21, 251. [Google Scholar] [CrossRef]
- Mohotti, A.J.; Lawlov, D.W. Diurnal variation of photosynthesis and photoinhibition in tea: Effects of irradiance and nitrogen supply during growth in the field. J. Exp. Bot. 2002, 53, 313–322. [Google Scholar] [CrossRef]
- Chen, S.; Fleischer, S.J.; Saunders, M.C.; Thomas, M.B. The influence of diurnal temperature variation on degree-day accumulation and insect life history. PLoS ONE 2015, 10, e0120772. [Google Scholar] [CrossRef]
- Hu, A.; Nie, Y.; Yu, G.; Han, C.; He, J.; He, N.; Liu, S.; Deng, J.; Shen, W.; Zhang, G. Diurnal temperature variation and plants drive latitudinal patterns in seasonal dynamics of soil microbial community. Front. Microbiol. 2019, 10, 674. [Google Scholar] [CrossRef]
- Bakker, J.C.; Uffelen, J.A.M. The effects of diurnal temperature regimes on growth and yield of glasshouse sweet pepper. Neth. J. Agric. Sci. 1988, 36, 201–208. [Google Scholar] [CrossRef]
- Gallo, K.P.; Easterling, D.R.; Peterson, T.C. The influence of land use/land cover on climatological values of the diurnal temperature range. J. Clim. 1996, 9, 2941–2944. [Google Scholar] [CrossRef]
- Dai, A.; DelGenio, A.D.; Fung, I.Y. Clouds, precipitation, and temperature range. Nature 1997, 386, 665–666. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of clouds, soil moisture, precipitation, and water vapor on Diurnal Temperature Range. J. Clim. 1999, 12, 2451–2473. [Google Scholar] [CrossRef]
- Qu, M.; Wan, J.; Hao, X. Analysis of diurnal air temperature range change in the continental United States. Weather Clim. Extrem. 2014, 4, 86–95. [Google Scholar] [CrossRef]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, L13217. [Google Scholar] [CrossRef]
- Makowski, K.; Wild, M.; Ohmura, A. Diurnal temperature range over Europe between 1950 and 2005. Atmospheric Chemistry and. Physics 2008, 8, 6483–6498. [Google Scholar] [CrossRef]
- Roy, S.S.; Balling, R.C. Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophys. Res. Lett. 2005, 32, L12702. [Google Scholar] [CrossRef]
- Roget, E.; Khan, V.M. Decadal differences of the diurnal temperature range in the Aral Sea region at the turn of the century. Tellus A Dyn. Meteorol. Oceanogr. 2018, 70, 1513290. [Google Scholar] [CrossRef]
- Gajić-Čapka, M.; Zaninović, K. Changes in temperature extremes and their possible causes at the SE boundary of the Alps. Theor. Appl. Climat. 1997, 57, 89–94. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Vose, R.S.; Dai, Y. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel. Proc. Natl. Acad. Sci. USA 2007, 104, 17937–17942. [Google Scholar] [CrossRef] [PubMed]
- Snow, R.K.; Snow, M.M. Annual temperature range time-series trends and long-range forecasting. Natl. Weather Dig. 2005, 29, 3–12. [Google Scholar]
- Bonacci, O.; Bonacci, D.; Roje-Bonacci, T. Different air temperature changes in continental and Mediterranean regions: A case study from two Croatian stations. Theor. Appl. Climat. 2021, 145, 1333–1346. [Google Scholar] [CrossRef]
- Nimac, I.; Herceg-Bulić, I.; Cindrić-Kalin, K.; Perčec-Tadić, M. Changes in extreme air temperatures in the mid-sized European city situated on southern base of a mountain (Zagreb, Croatia). Theor. Appl. Climat. 2021, 146, 429–441. [Google Scholar] [CrossRef]
- Likso, T. Inhomogeneities in temperature time series in Croatia. Hrvat. Meteorološki Časopis 2003, 38, 3–9. [Google Scholar]
- Pandžić, K.; Likso, T. Homogeneity of average annual air temperature time series for Croatia. Int. J. Climat. 2010, 30, 1215–1225. [Google Scholar] [CrossRef]
- Penzar, I.; Juras, J.; Marki, A. Long-term meteorological measurements at Zagreb: 1862–1990. Geofizika 1990, 9, 1–171. [Google Scholar]
- Rasol, D.; Likso, T.; Milković, J. Homogenisation of temperature time series in Croatia. In Proceedings of the Sixth Seminar for Homogenization and Quality Control in Climatological Databases, Hungary, Budapest, 26–30 May 2008; pp. 85–93. [Google Scholar]
- Bonacci, O. What is above average air temperature!? Theor. Appl. Climat. 2022, 150, 85–101. [Google Scholar] [CrossRef]
- Bonacci, O.; Andrić, I.; Roje-Bonacci, T. Increasing trends of air temperature in urban area: A case study from four stations in Zagreb City area. Vodoprivreda 2018, 50, 203–214. [Google Scholar]
- Bonacci, O.; Roje-Bonacci, T.; Vrsalović, A. The day-to-day temperature variability method as a tool for urban heat island analysis: A case of Zagreb-Grič Observatory (1887–2018). Urban Clim. 2022, 45, 101281. [Google Scholar] [CrossRef]
- Bonacci, O.; Roje-Bonacci, T. Analyses of the Zagreb Grič Observatory air temperatures indices for the period 1881 to 2017. Acta Hydrotech. 2018, 31, 67–85. [Google Scholar] [CrossRef]
- Bonacci, O.; Roje-Bonacci, T. Primjena metode dan za danom varijabilnosti temperature zraka na podatcima opaženim na opservatoriju Zagreb-Grič (1887–2018). Hrvat. Vode 2020, 28, 125–134. [Google Scholar]
- Cvitan, L.; Sokol Jurković, R. Secular trends in monthly heating and cooling demands in Croatia. Theor. Appl. Climat. 2016, 125, 565–581. [Google Scholar] [CrossRef]
- Juras, J. Neke karakteristike promjene klime Zagreba u posljednja tri desetljeća. Geofizika 1985, 2, 93–102. [Google Scholar]
- Makjanić, B.; Penzar, B.; Penzar, I. Prilog poznavanju klime grada Zagreba, I; Radovi Geofizički Zavod: Zagreb, Croatia, 1977; Volume III, pp. 1–45. [Google Scholar]
- Nimac, I.; Perčec Tadić, M. Complete and homogeneous monthly air temperature series for the construction of 1981–2010 climatological normals in Croatia. Geofizika 2017, 34, 225–249. [Google Scholar] [CrossRef]
- Nitis, T.; Bencetić Klaić, Z.; Moussiopoulos, N. Effects of topography on the Urban Heat Island. In Proceedings of the 10th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Sissi, Greece, 17–20 October 2005; pp. 1–5. [Google Scholar]
- Penzar, B.; Penzar, I.; Juras, J.; Marki, A. Brief review of climatic fluctuations recorded in Zagreb between 1862 and 1990. Geofizika 1992, 9, 57–67. [Google Scholar]
- Radić, V.; Pasarić, N.; Šinik, N. Analiza zagrebačkih klimatoloških nizova pomoću empirijski određenih prirodnih sastavnih funkcija. Geofizika 2004, 21, 15–36. [Google Scholar]
- Šegota, T. Srednja temperatura zraka u Zagrebu. Hrvat. Geogr. Glas. 1986, 48, 13–25. [Google Scholar]
- Šegota, T. Maksimalne temperature zraka u Zagrebu. Radovi 1987, 22, 5–18. [Google Scholar]
- Šegota, T. Minimalne temperature zraka u Zagrebu. Hrvat. Geogr. Glas. 1988, 50, 7–21. [Google Scholar]
- Šinik, N. Signifikantnost recentnih klimatskih fluktuacija u Zagrebu. Geofizika 1985, 2, 81–91. [Google Scholar]
- Bonacci, O.; Andrić, I.; Vrsalović, A.; Bonacci, D. Precipitation regime changes at four Croatian meteorological stations. Atmosphere 2021, 12, 885. [Google Scholar] [CrossRef]
- Bonacci, O.; Matešan, D. Analysis of precipitation appearance in time. Hydrol. Proc. 1999, 13, 1683–1690. [Google Scholar] [CrossRef]
- Bonacci, O.; Roje-Bonacci, T. Analiza dnevnih, mjesečnih i godišnjih oborina Zagreb Griča (1862–2017) za potrebe inženjerske hidrologije. Hrvat. Vode 2019, 27, 7–20. [Google Scholar]
- Cindrić, K. Statistical analysis of wet and dry spells in Croatia by the binary DARMA (1,1) model. Hrvat. Meteorološki Časopis 2006, 41, 43–51. [Google Scholar]
- Gajić-Čapka, M. Varijabilnost prosječnog oborinskog režima šire zagrebačke regije. Rasprave 1982, 17, 23–40. [Google Scholar]
- Gajić-Čapka, M. Stationarity, trend and periodicity of precipitation at the Zagreb-Grič Observatory from 1862 to 1990. Hrvat. Meteorološki Časopis 1992, 27, 68291. [Google Scholar]
- Gajić-Čapka, M.; Čapka, B. Analiza ljetnih oborina na području grada Zagreba. Hrvat. Meteorološki Časopis 1985, 20, 31–40. [Google Scholar]
- Pandžić, K.; Likso, T.; Curić, O.; Mesić, M.; Pejić, I.; Pasarić, Z. Drought indices for the Zagreb-Grič Observatory with an overview of drought damage in agriculture in Croatia. Theor. Appl. Climat. 2020, 142, 555–567. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric test of randomness against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Husain Shourov, M.M.; Mahmud, I. pyMannKendall: A python package for nonparametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Garbrecht, J.; Fernandez, G.P. Visualization of trends and fluctuations in climatic records. Water Resour. Bull. 1994, 30, 297–306. [Google Scholar] [CrossRef]
- Đurin, B.; Ptiček Siročić, A.; Muhar, A. Analiza povezanosti pokazatelja kakvoće otpadne vode s temperaturom i oborinama pomoću RAPS metode. Hrvat. Vode 2017, 25, 247–252. [Google Scholar]
- Pavlić, I. Matematička Statistika (Primjena u Proizvodnji); Privreda: Zagreb, Croatia, 1962. [Google Scholar]
- McGhee, J.W. Introductory Statistics; West Publishing Company: New York, NY, USA, 1985. [Google Scholar]
Average | A | R | p | |
---|---|---|---|---|
Tmin | −11.58 °C | 0.048 °C/year | 0.439 | <0.01 |
Tmean | 11.71 °C | 0.0155 °C/year | 0.631 | <0.01 |
Tmax | 33.81 °C | 0.0152 °C/year | 0.294 | <0.01 |
P | 881.4 mm | 0.0224 mm/year | 0.005 | >0.05 |
DTR | 7.80 °C | −0.0014 °C/year | 0.110 | >0.05 |
Sub-Period | Average (°C) | p (F-test) | p (t-test) | |
---|---|---|---|---|
Tmin | 1887–1969 | −13.07 | <0.01 | <0.01 |
1970–2019 | −9.11 | |||
Tmean | 1887–1969 | 11.36 | >0.05 | <0.01 |
1970–2019 | 12.81 | |||
Tmax | 1887–1969 | 33.42 | >0.05 | <0.01 |
1970–2019 | 35.76 | |||
DTR | 1887–1953 | 7.94 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 7.37 | |||
1990–2019 | 8.01 |
Sub-Period | R | |
---|---|---|
DTR-P | 1887–2019 | −0.445 |
1887–1953 | −0.513 | |
1954–1989 | −0.341 | |
1990–2019 | −0.604 | |
DTR-Tmean | 1887–2019 | 0.361 |
1887–1953 | 0.204 | |
1954–1989 | 0.367 | |
1990–2019 | 0.564 |
Month | DTRmin (°C) | DTRav (°C) | DTRmax (°C) | a (°C/Year) | R | p |
---|---|---|---|---|---|---|
Jan. | 2.28 | 5.15 | 7.42 | −0.0016 | −0.0592 | p > 0.05 |
Feb. | 3.77 | 6.35 | 9.90 | −0.0023 | −0.0755 | p > 0.05 |
Mar. | 4.68 | 7.90 | 11.02 | 0.0005 | 0.0173 | p > 0.05 |
Apr. | 7.04 | 8.98 | 11.83 | 0.0018 | 0.0728 | p > 0.05 |
May | 7.40 | 9.53 | 11.93 | 0.0011 | 0.0520 | p > 0.05 |
June | 6.80 | 9.80 | 12.32 | −0.0018 | −0.0806 | p > 0.05 |
July | 8.03 | 10.19 | 12.75 | −0.0037 | −0.1562 | p > 0.05 |
Aug. | 7.80 | 9.84 | 11.96 | −0.0077 | −0.2860 | p < 0.01 |
Sep. | 6.36 | 8.70 | 11.55 | −0.0056 | −0.2254 | p < 0.01 |
Oct. | 4.27 | 7.23 | 10.41 | −0.0014 | −0.0548 | p > 0.05 |
Nov. | 2.49 | 5.27 | 8.03 | −0.0031 | −0.1217 | p > 0.05 |
Dec. | 2.15 | 4.58 | 7.44 | 0.0042 | 0.1786 | p < 0.05 |
Month | Tav (°C) | R | P | Pav (mm) | R | p |
---|---|---|---|---|---|---|
Jan. | 0.71 | 0.328 | p < 0.01 | 50.2 | 0.081 | p > 0.05 |
Feb. | 2.75 | 0.293 | p < 0.01 | 37.1 | 0.096 | p > 0.05 |
Mar. | 7.40 | 0.277 | p < 0.01 | 53.5 | −0.131 | p > 0.05 |
Apr. | 12.0 | 0.392 | p < 0.01 | 65.7 | −0.094 | p > 0.05 |
May | 16.5 | 0.295 | p < 0.01 | 82.0 | −0.069 | p > 0.05 |
June | 19.9 | 0.404 | p < 0.01 | 95.3 | −0.020 | p > 0.05 |
July | 21.9 | 0.366 | p < 0.01 | 83.7 | −0.0001 | p > 0.05 |
Aug. | 21.2 | 0.378 | p < 0.01 | 81.7 | 0.007 | p > 0.05 |
Sep. | 17.2 | 0.165 | p > 0.05 | 87.0 | 0.017 | p > 0.05 |
Oct. | 12.0 | 0.219 | p < 0.05 | 87.6 | −0.167 | p > 0.05 |
Nov. | 6.64 | 0.294 | p < 0.01 | 84.0 | 0.003 | p > 0.05 |
Dec. | 2.32 | 0.217 | p < 0.01 | 63.4 | 0.014 | p > 0.05 |
Month | Sub-Period | DTRav | p (F-Test) | p (t-Test) |
---|---|---|---|---|
Jan. | 1887–1953 | 5.22 | >0.05 >0.05 | >0.05 <0.05 |
1954–1989 | 4.84 | |||
1990–2019 | 5.38 | |||
Feb. | 1887–1953 | 6.54 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 5.56 | |||
1990–2019 | 6.86 | |||
Mar. | 1887–1953 | 8.02 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 7.27 | |||
1990–2019 | 8.39 | |||
Apr. | 1887–1953 | 9.07 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 8.50 | |||
1990–2019 | 9.35 | |||
May | 1887–1953 | 9.63 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 9.17 | |||
1990–2019 | 9.74 | |||
June | 1887–1953 | 10.01 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 9.20 | |||
1990–2019 | 10.06 | |||
July | 1887–1953 | 10.47 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 9.63 | |||
1990–2019 | 10.25 | |||
Aug. | 1887–1953 | 10.29 | >0.05 >0.05 | <0.01 <0.01 |
1954–1989 | 9.05 | |||
1990–2019 | 9.80 | |||
Sep. | 1887–1953 | 8.99 | >0.05 >0.05 | <0.01 >0.05 |
1954–1989 | 8.38 | |||
1990–2019 | 8.45 | |||
Oct. | 1887–1953 | 7.30 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 7.09 | |||
1990–2019 | 7.23 | |||
Nov. | 1887–1953 | 5.19 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 5.19 | |||
1990–2019 | 5.57 | |||
Dec. | 1887–1953 | 4.43 | >0.05 >0.05 | >0.05 <0.05 |
1954–1989 | 4.48 | |||
1990–2019 | 5.03 |
Month | Sub-Period | Tav | p (F-Test) | p (t-Test) |
---|---|---|---|---|
Jan. | 1887–1953 | 0.076 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 0.43 | |||
1990–2019 | 2.47 | |||
Feb. | 1887–1953 | 2.09 | >0.05 >0.05 | >0.05 <0.05 |
1954–1989 | 2.61 | |||
1990–2019 | 4.39 | |||
Mar. | 1887–1953 | 7.00 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 7.01 | |||
1990–2019 | 8.74 | |||
Apr. | 1887–1953 | 11.68 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 11.66 | |||
1990–2019 | 13.19 | |||
May | 1887–1953 | 16.25 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 16.16 | |||
1990–2019 | 17.57 | |||
Jun. | 1887–1953 | 19.15 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 19.40 | |||
1990–2019 | 21.24 | |||
Jul. | 1887–1953 | 21.70 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 21.30 | |||
1990–2019 | 23.09 | |||
Aug. | 1887–1953 | 20.98 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 20.51 | |||
1990–2019 | 22.73 | |||
Sep. | 1887–1953 | 17.14 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 17.06 | |||
1990–2019 | 17.49 | |||
Oct. | 1887–1953 | 11.74 | >0.05 >0.05 | >0.05 <0.05 |
1954–1989 | 11.85 | |||
1990–2019 | 12.69 | |||
Nov. | 1887–1953 | 6.23 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 6.41 | |||
1990–2019 | 7.83 | |||
Dec. | 1887–1953 | 2.00 | >0.05 >0.05 | >0.05 <0.01 |
1954–1989 | 2.37 | |||
1990–2019 | 2.98 |
Month | Sub-Period | Pav | p (F-Test) | p (t-Test) |
---|---|---|---|---|
Jan. | 1887–1953 | 49.4 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 53.8 | |||
1990–2019 | 47.9 | |||
Feb. | 1887–1953 | 46.5 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 47.9 | |||
1990–2019 | 47.4 | |||
Mar. | 1887–1953 | 52.6 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 57.7 | |||
1990–2019 | 50.7 | |||
Apr. | 1887–1953 | 66.8 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 65.9 | |||
1990–2019 | 63.0 | |||
May | 1887–1953 | 82.7 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 87.6 | |||
1990–2019 | 73.8 | |||
Jun. | 1887–1953 | 92.8 | >0.05 <0.05 | >0.05 >0.05 |
1954–1989 | 105.4 | |||
1990–2019 | 88.8 | |||
Jul. | 1887–1953 | 81.3 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 89.3 | |||
1990–2019 | 82.5 | |||
Aug. | 1887–1953 | 75.8 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 92.5 | |||
1990–2019 | 81.9 | |||
Sep. | 1887–1953 | 82.4 | >0.05 <0.01 | >0.05 <0.05 |
1954–1989 | 80.2 | |||
1990–2019 | 105.4 | |||
Oct. | 1887–1953 | 97.5 | >0.05 >0.05 | <0.05 >0.05 |
1954–1989 | 69.6 | |||
1990–2019 | 87.3 | |||
Nov. | 1887–1953 | 82.7 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 81.4 | |||
1990–2019 | 90.1 | |||
Dec. | 1887–1953 | 62.8 | >0.05 >0.05 | >0.05 >0.05 |
1954–1989 | 65.4 | |||
1990–2019 | 62.3 |
R | DTR-P | DTR-Tmean |
---|---|---|
Jan. | −0.223 | 0.112 |
Feb. | −0.425 | 0.242 |
Mar. | −0.425 | 0.587 |
Apr. | −0.557 | 0.630 |
May | −0.554 | 0.593 |
Jun. | −0.469 | 0.480 |
Jul. | −0.541 | 0.515 |
Aug. | −0.504 | 0.569 |
Sep. | −0.558 | 0.553 |
Oct. | −0.422 | 0.298 |
Nov. | −0.192 | 0.360 |
Dec. | −0.156 | 0.334 |
R | DTR-P | DTR-Tmean | ||||
---|---|---|---|---|---|---|
1887–1953 | 1954–1989 | 1990–2019 | 1887–1953 | 1954–1989 | 1990–2019 | |
Jan. | −0.228 | −0.057 | 0.010 | 0.044 | 0.111 | 0.484 |
Feb. | −0.432 | −0.262 | −0.657 | −0.044 | 0.275 | 0.581 |
Mar. | −0.495 | −0.373 | −0.325 | 0.486 | 0.645 | 0.701 |
Apr. | −0.664 | −0.315 | −0.646 | 0.220 | 0.584 | 0.485 |
May | −0.522 | −0.385 | −0.598 | 0.598 | 0.557 | 0.650 |
Jun. | −0.559 | −0.449 | −0.081 | 0.559 | 0.296 | 0.532 |
Jul. | −0.644 | −0.452 | −0.415 | 0.717 | 0.326 | 0.330 |
Aug. | −0.453 | −0.277 | −0.778 | 0.624 | 0.632 | 0.832 |
Sep. | −0.627 | −0.411 | −0.569 | 0.613 | 0.457 | 0.648 |
Oct. | −0.354 | −0.604 | −0.565 | 0.320 | 0.117 | 0.522 |
Nov. | −0.140 | −0.239 | −0.321 | 0.260 | 0.382 | 0.431 |
Dec. | −0.221 | −0.138 | −0.045 | 0.193 | 0.562 | 0.247 |
Sub-Period | ATRav (°C) | p (F-Test) | p (t-Test) |
---|---|---|---|
1887–1905 | 24.15 | >0.05 >0.05 <0.05 | <0.01 <0.01 <0.01 |
1906–1926 | 21.23 | ||
1927–1964 | 23.66 | ||
1965–2019 | 22.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonacci, O.; Ðurin, B. The Behavior of Diurnal Temperature Range (DTR) and Annual Temperature Range (ATR) in the Urban Environment: A Case of Zagreb Grič, Croatia. Atmosphere 2023, 14, 1346. https://doi.org/10.3390/atmos14091346
Bonacci O, Ðurin B. The Behavior of Diurnal Temperature Range (DTR) and Annual Temperature Range (ATR) in the Urban Environment: A Case of Zagreb Grič, Croatia. Atmosphere. 2023; 14(9):1346. https://doi.org/10.3390/atmos14091346
Chicago/Turabian StyleBonacci, Ognjen, and Bojan Ðurin. 2023. "The Behavior of Diurnal Temperature Range (DTR) and Annual Temperature Range (ATR) in the Urban Environment: A Case of Zagreb Grič, Croatia" Atmosphere 14, no. 9: 1346. https://doi.org/10.3390/atmos14091346
APA StyleBonacci, O., & Ðurin, B. (2023). The Behavior of Diurnal Temperature Range (DTR) and Annual Temperature Range (ATR) in the Urban Environment: A Case of Zagreb Grič, Croatia. Atmosphere, 14(9), 1346. https://doi.org/10.3390/atmos14091346