Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Sources
2.2. PWV Calculation Method Based on Integral Method
2.3. Precision Analysis Indicators
2.4. Correlation Analysis Based on Pearson Correlation Coefficient
3. Results and Analysis
3.1. Precision Analysis
3.2. Experiments and Analysis
3.2.1. The Qualitative Correlation Analysis of the PWV and Rainfall
3.2.2. Correlation Analysis of the PWV and ‘Weather Station-Typhoon’ Distance
3.2.3. Spatial Distribution Analysis of PWV, Rainfall and Typhoon Track
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dalu, G. Satellite remote sensing of atmospheric water vapour. Int. J. Remote. Sens. 1986, 7, 1089–1097. [Google Scholar] [CrossRef]
- Bei, L.; Yong, W.; Zesheng, L.; Wei, Z. MODIS PWV correction in mainland China under CMONOC observation constraints. J. Surv. Mapp. 2019, 48, 9. [Google Scholar]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Chuang, S.; Weixing, Z.; Yunchang, C.; Yidong, L.; Hong, L.; Lei, F.; Satirapod, C.; Trakolkul, C. Analysis of atmospheric water vapor climate characteristics and precipitation in China-Zhongnan Peninsula based on Beidou/GNSS. J. Surv. Mapp. 2020, 49, 1112–1119. [Google Scholar]
- Xu, Y.; Chen, X.; Liu, M.; Wang, J.; Zhang, F.; Cui, J.; Zhou, H. Spatial–Temporal Relationship Study between NWP PWV and Precipitation: A Case Study of ‘July 20’ Heavy Rainstorm in Zhengzhou. Remote. Sens. 2022, 14, 3636. [Google Scholar] [CrossRef]
- Tang, X.; Hancock, C.M.; Xiang, Z.; Kong, Y.; de Ligt, H.; Shi, H.; Quaye-Ballard, J.A. Precipitable Water Vapour Retrieval from GPS Precise Point Positioning and NCEP CFSv2 Dataset during Typhoon Events. Sensors 2018, 18, 3831. [Google Scholar] [CrossRef]
- Li, L.; Zhang, K.; Wu, S.; Li, H.; Wang, X.; Hu, A.; Li, W.; Fu, E.; Zhang, M.; Shen, Z. An Improved Method for Rainfall Forecast Based on GNSS-PWV. Remote. Sens. 2022, 14, 4280. [Google Scholar] [CrossRef]
- He, Q.; Zhang, K.; Wu, S.; Zhao, Q.; Wang, X.; Shen, Z.; Li, L.; Wan, M.; Liu, X. Real-Time GNSS-Derived PWV for Typhoon Characterizations: A Case Study for Super Typhoon Mangkhut in Hong Kong. Remote. Sens. 2019, 12, 104. [Google Scholar] [CrossRef]
- Vey, S.; Dietrich, R.; Rülke, A.; Fritsche, M.; Steigenberger, P.; Rothacher, M. Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade. J. Clim. 2010, 23, 1675–1695. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Liu, L.; Zeng, Z.; Chen, J.; Xiong, S.; He, H. Evaluation of Hourly PWV Products Derived from ERA5 and MERRA-2 Over the Tibetan Plateau Using Ground-Based GNSS Observations by Two Enhanced Models. Earth Space Sci. 2021, 8, e2020EA001516. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, F.; Li, H.; Zhou, Q.; Chen, Q.; Ma, W.; Luo, J.; Huang, Y. Global Navigation Satellite System-Based Retrieval of Precipitable Water Vapor and Its Relationship with Rainfall and Drought in Qinghai, China. Atmosphere 2023, 14, 517. [Google Scholar] [CrossRef]
- Dingan, H.; Chuhan, L.; Yang, K.; Fei, X.; Yujing, Q. Diagnostic analysis of water vapor source in Jianghuai region in June 2020 based on ERA5 reanalysis data. Meteorol. Sci. 2022, 42, 44–50. [Google Scholar]
- Na, W.; Weizong, G.; Can, Q.; Xiangxin, M.; Fang, Z. Shandong summer air water vapor distribution and water vapor transmission characteristics. Plateau Weather. 2021, 40, 159–168. [Google Scholar]
- Asaly, S.; Gottlieb, L.-A.; Yair, Y.; Price, C.; Reuveni, Y. Predicting Eastern Mediterranean Flash Floods Using Support Vector Machines with Precipitable Water Vapor, Pressure, and Lightning Data. Remote. Sens. 2023, 15, 2916. [Google Scholar] [CrossRef]
- Ren, D.; Wang, Y.; Wang, G.; Liu, L. Rising trends of global precipitable water vapor and its correlation with flood frequency. Geodesy Geodyn. 2023, 14, 355–367. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Liu, Y.; Cao, Y.; Liang, H.; Hu, H.; Liang, J.; Tu, M. Assimilation of GNSS PWV with NCAR-RTFDDA to Improve Prediction of a Landfall Typhoon. Remote. Sens. 2022, 14, 178. [Google Scholar] [CrossRef]
- Tu, M.; Zhang, W.; Bai, J.; Wu, D.; Liang, H.; Lou, Y. Spatio-Temporal Variations of Precipitable Water Vapor and Horizontal Tropospheric Gradients from GPS during Typhoon Lekima. Remote. Sens. 2021, 13, 4082. [Google Scholar] [CrossRef]
- Serrano-Vincenti, S.; Condom, T.; Campozano, L.; Escobar, L.A.; Walpersdorf, A.; Carchipulla-Morales, D.; Villacís, M. Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions. Atmosphere 2022, 13, 1809. [Google Scholar] [CrossRef]
- Aijun, D.; Qiang, Z.; Shiqi, Y.; Xingwei, L.; Chaoqi, X.; Qinyu, Y. The relationship between atmospheric precipitation detected by Beidou CORS and rainfall in Chongqing. Geod. Geodyn. 2020, 40, 134–139. [Google Scholar]
- Hao, Q.; Fengqin, Z.; Liquan, W. The interaction between the intensity of Typhoon Wilson (1409) and the change of precipitation. J. Appl. Meteorol. 2022, 33, 477–488. [Google Scholar]
- Xiaojing, X. Research on Atmospheric Precipitation Inversion and Typhoon Monitoring in Chongming District Based on GNSS; East China Normal University: Shanghai, China, 2022. [Google Scholar]
- Qin, W.; Yibin, Y.; Chen, L.; Chaoqi, X. Study on the Correlation between GNSS-PWV and Rainfall during Typhoon—Take Shanghai as an Example; Surveying and Mapping Geographic Information: Wuhan, China, 2022; pp. 1–4. [Google Scholar]
- Jingying, Z.; Yiyong, L.; Jian, D.; Yuanrong, H.; Cheng, H. Correlation analysis of PWV and rainfall during typhoon. Geod. Geodyn. 2020, 40, 491–495+501. [Google Scholar]
- Kim, Y.-J.; Jee, J.-B.; Lim, B. Investigating the Influence of Water Vapor on Heavy Rainfall Events in the Southern Korean Peninsula. Remote. Sens. 2023, 15, 340. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Yao, W.; Yao, Y. A New Typhoon-Monitoring Method Using Precipitation Water Vapor. Remote. Sens. 2019, 11, 2845. [Google Scholar] [CrossRef]
- Xiaolei, T.; Baofu, L.; Xuewei, L.; Ting, L.; Mingbo, Z.; Longfei, W. The spatial and temporal changes of atmospheric precipitation in the North China Plain from 1970 to 2012 and its influencing factors. J. Liaocheng Univ. (Nat. Sci. Ed.) 2019, 32, 81–88. [Google Scholar]
- Xuexin, N.; Huiliang, D.; Teng Dai High School. Analysis of the main factors affecting the precipitation of the landing typhoon. Rainstorm Disaster 2010, 29, 76–80. [Google Scholar]
- Yongfeng, W.; Shaofeng, X.; Jihong, Z.; Yin, Z. Accuracy analysis of ERA5/MERRA-2 data calculation PWV in a rainstorm process in Guilin. Chin. Sci. Technol. Pap. 2023, 18, 103–108. [Google Scholar]
- Oloyede, O.A.; Nicolas, L.; Simeon, O.; Philip, A.; Emmanuel, E.; Alexander, A. Upper-air meteorological dataset for Uyo, using radiosonde. Data Brief 2023, 46. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Zheng, Y.; Wu, Z.; Wang, Q. Precipitable water vapor fusion of MODIS and ERA5 based on convolutional neural network. GPS Solut. 2022, 27, 15. [Google Scholar] [CrossRef]
- Bondarev, A.S. Root Mean Square Error Estimates for the Projection-Difference Method for the Approximate Solution of a Parabolic Equation with a Periodic Condition for the Solution. J. Math. Sci. 2023, 272, 866–871. [Google Scholar] [CrossRef]
- Robeson, S.M.; Willmott, C.J. Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE 2023, 18, e0279774. [Google Scholar] [CrossRef]
- Qinghong, G.; Xiaocui, M.; Xiaofeng, F.; Zhengming, Y.; Xiao, L.; Xia, X. Effects of stand age and inter-annual precipitation variability on fine root biomass in poplar plantations in the eastern coastal China. For. Ecol. Manag. 2022, 505. [Google Scholar]
- Rose, M.S.; Sunil, P.S.; Zacharia, J.; Sreejith, K.M.; Sunda, S.; Mini, V.K.; Sunil, A.S.; Kumar, K.V. Early detection of heavy rainfall events associated with the monsoon in Kerala, India using GPS derived ZTD and PWV estimates: A case study. J. Earth Syst. Sci. 2023, 132, 23. [Google Scholar] [CrossRef]
Station Number | CAM00071802 | CHM00054374 |
---|---|---|
RMSE | 1.968 | 2.458 |
MAE | 1.411 | 1.349 |
Station Number | Latitude (°) | Longitude (°) | Elevation (m) | Address |
---|---|---|---|---|
479180 | 24.34 | 124.19 | 28.34 | okinawa Ishigaki |
479170 | 24.43 | 123.77 | 11.20 | okinawa Ishigaki |
584770 | 30.03 | 122.12 | 37.00 | Dinghai District, ZhejiangProvince |
584720 | 30.73 | 122.45 | 81.00 | Shengsi County, Zhejiang Province |
583211 | 31.14 | 121.81 | 3.96 | Pudong District, Shanghai |
583670 | 31.19 | 121.34 | 3.04 | Xujiahui District, Shanghai |
583620 | 31.40 | 121.47 | 4.00 | Baoshan District, Shanghai |
582650 | 32.07 | 121.60 | 10.00 | Qidong City, Jiangsu Province |
582510 | 32.85 | 120.28 | 4.00 | Dongtai City, Jiangsu Province |
581500 | 33.75 | 120.30 | 3.00 | Sheyang County, Jiangsu Province |
580400 | 34.85 | 119.13 | 10.00 | Ganyu District, Jiangsu Province |
549450 | 35.43 | 119.53 | 37.00 | Donggang District, Shandong Province |
548570 | 36.27 | 120.37 | 10.05 | Chengyang District, Shandong Province |
548630 | 36.77 | 121.17 | 64.00 | Haiyang City, Shandong Province |
547510 | 37.93 | 120.71 | 40.00 | Yantai Long Island |
546620 | 38.97 | 121.53 | 32.61 | Ganjingzi District, Liaoning Province |
Station Number | Time through the Station | The Time of the Maximum PWV | Interval Time/h |
---|---|---|---|
479180 | 11:00, 12 September | 20:00, 11 September | 15 |
479170 | 14:00, 12 September | 21:00, 11 September | 17 |
584770 | 21:00, 14 September | 12:00, 14 September | 9 |
584720 | 23:00, 14 September | 15:00, 14 September | 8 |
583211 | 01:00, 15 September | 16:00, 14 September | 9 |
583670 | 02:00, 15 September | 14:00, 14 September | 12 |
583620 | 03:00, 15 September | 17:00, 14 September | 10 |
582650 | 05:00, 15 September | 18:00, 14 September | 11 |
582510 | 10:00, 15 September | 21:00, 14 September | 13 |
581500 | 13:00, 15 September | 02:00, 15 September | 11 |
580400 | 18:00, 15 September | 06:00, 15 September | 12 |
549450 | 21:00, 15 September | 07:00, 15 September | 14 |
548570 | 01:00, 16 September | 09:00, 15 September | 14 |
548630 | 05:00, 16 September | 09:00, 15 September | 18 |
547510 | 08:00, 16 September | 21:00, 15 September | 11 |
546620 | 12:00, 16 September | 01:00, 16 September | 11 |
Station Name | Peason Correlation Coefficient |
---|---|
479170 | −0.69 |
479180 | −0.69 |
584770 | −0.70 |
584720 | −0.66 |
583211 | −0.63 |
581500 | −0.86 |
580400 | −0.85 |
583670 | −0.64 |
549450 | −0.83 |
583620 | −0.63 |
582650 | −0.60 |
582510 | −0.78 |
548570 | −0.80 |
546620 | −0.71 |
548630 | −0.80 |
547510 | −0.68 |
Mean correlation coefficient | −0.73 |
Weather Station Number | 10 September | 11 September | 12 September | 13 September | 14 September | 15 September | 16 September |
---|---|---|---|---|---|---|---|
479180 | 11.62 | 107.13 | 125.47 | 58.31 | 0.10 | 0.31 | 2.65 |
479170 | 7.91 | 87.23 | 188.91 | 75.61 | 0.43 | 0.50 | 1.041 |
584770 | 0.15 | 0.22 | 32.75 | 82.41 | 115.05 | 4.58 | 0.11 |
584720 | 0.35 | 1.59 | 23.31 | 79.54 | 53.03 | 4.69 | 0.0099 |
583211 | 0.0053 | 0.79 | 88.88 | 28.37 | 49.89 | 12.93 | 0.70 |
583670 | 0.0053 | 0.79 | 88.88 | 28.37 | 49.88 | 49.89 | 0.71 |
583620 | 0.0073 | 0.21 | 87.44 | 25.19 | 38.36 | 17.03 | 0.93 |
582650 | 0.026 | 0.029 | 56.17 | 28.29 | 36.85 | 23.79 | 0.83 |
582510 | 0.0058 | 0.39 | 3.67 | 31.61 | 129.87 | 28.83 | 0.32 |
581500 | 0.0042 | 1.32 | 1.09 | 8.39 | 131.76 | 59.31 | 5.22 |
580400 | 0 | 0.0031 | 0.062 | 1.03 | 21.29 | 69.61 | 0.51 |
549450 | 0 | 0.035 | 0.097 | 0.32 | 27.99 | 76.32 | 0.49 |
548570 | 0 | 0.021 | 0.063 | 0.0052 | 95.96 | 97.65 | 3.96 |
548630 | 0.0086 | 0.011 | 0.053 | 0.015 | 46.91 | 52.69 | 21.83 |
547510 | 0.0054 | 0.054 | 0.0055 | 0.0061 | 39.35 | 99.59 | 46.03 |
546620 | 0.0056 | 0.0056 | 0.0056 | 0.0067 | 26.41 | 92.90 | 83.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, J.; Wei, C.; Yu, J. Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022. Atmosphere 2023, 14, 1313. https://doi.org/10.3390/atmos14081313
Li Z, Wang J, Wei C, Yu J. Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022. Atmosphere. 2023; 14(8):1313. https://doi.org/10.3390/atmos14081313
Chicago/Turabian StyleLi, Zhikun, Jin Wang, Changhao Wei, and Jiaye Yu. 2023. "Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022" Atmosphere 14, no. 8: 1313. https://doi.org/10.3390/atmos14081313
APA StyleLi, Z., Wang, J., Wei, C., & Yu, J. (2023). Analysis of the Temporal and Spatial Characteristics of PWV and Rainfall with the Typhoon Movement: A Case Study of ‘Meihua’ in 2022. Atmosphere, 14(8), 1313. https://doi.org/10.3390/atmos14081313