Ice Core 17O Reveals Past Changes in Surface Air Temperatures and Stratosphere to Troposphere Mass Exchange
Abstract
:1. Introduction
2. Stratospheric Input and Precipitation 17O
2.1. Mass-Dependent Fractionation Coefficient
2.2. Influence of Stratospheric Input on ∆’17O
3. The ∆’17O Paleothermometer
3.1. Calibration
- Southern Hemisphere (Antarctic): ∆’17O = 9.93 T (°C) − 91.6
- Northern Hemisphere (Greenland): ∆’17O = 6.42 T (°C) − 168.2
3.2. Temperature Reconstruction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Sveinbjörnsdottir, A.E.; Jouzel, J.; et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- Johnsen, S.J.; Dahl-Jensen, D.; Gundestrup, N.; Steffensen, J.P.; Clausen, H.B.; Miller, H.; Masson-Delmotte, V.; Sveinbjörnsdottir, A.E.; White, J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. Publ. Quat. Res. Assoc. 2001, 16, 299–307. [Google Scholar]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. Available online: https://cdiac.ess-dive.lbl.gov/ftp/trends/temp/vostok/vostok.1999.temp.dat (accessed on 25 October 2021). [CrossRef] [Green Version]
- Schmidt, G.A.; LeGrande, A.N.; Hoffmann, G. Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Jouzel, J.; Delaygue, G.; Landais, A.; Masson-Delmotte, V.; Risi, C.; Vimeux, F. Water isotopes as tools to document oceanic sources of precipitation. Water Resour. Res. 2013, 49, 7469–7486. [Google Scholar] [CrossRef]
- Jouzel, J.; Alley, R.B.; Cuffey, K.M.; Dansgaard, W.; Grootes, P.; Hoffmann, G.; Johnsen, S.J.; Koster, R.D.; Peel, D.; Shuman, C.A.; et al. Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. Ocean. 1997, 102, 26471–26487. [Google Scholar] [CrossRef]
- Jouzel, J.; Vimeux, F.; Caillon, N.; Delaygue, G.; Hoffmann, G.; Masson-Delmotte, V.; Parrenin, F. Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Goursaud, S.; Masson-Delmotte, V.; Favier, V.; Preunkert, S.; Legrand, M.; Minster, B.; Werner, M. Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica. Cryosphere 2019, 13, 1297–1324. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Clow, G.D.; Alley, R.B.; Stuiver, M.; Waddington, E.D.; Saltus, R.W. Saltus, Large arctic temperature change at the Wisconsin-Holocene glacial transition. Science 1995, 270, 455–458. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Clow, G.D.; Steig, E.J.; Buizert, C.; Fudge, T.J.; Koutnik, M.; Waddington, E.D.; Alley, R.B.; Severinghaus, J.P. Deglacial temperature history of West Antarctica. Proc. Natl. Acad. Sci. USA 2016, 113, 14249–14254. [Google Scholar] [CrossRef]
- Severinghaus, J.P.; Brook, E.J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar Ice. Science 1999, 286, 930–934. [Google Scholar]
- Buizert, C.; Gkinis, V.; Severinghaus, J.P.; He, F.; Lecavalier, B.S.; Kindler, P.; Leuenberger, M.; Carlson, A.E.; Vinther, B.; Masson-Delmotte, V.; et al. Greenland temperature response to climate forcing during the last deglaciation. Science 2014, 345, 1177–1180. Available online: https://www.science.org/doi/abs/10.1126/science.1254961 (accessed on 25 October 2021). [CrossRef]
- Kindler, P.; Guillevic, M.; Baumgartner, M.; Schwander, J.; Landais, A.; Leuenberger, M. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Clim. Past 2014, 10, 887–902. Available online: https://cp.copernicus.org/articles/10/887/2014 (accessed on 25 October 2021).
- Thompson, D.W.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, M.P.; Birner, T.; Brasseur, G.; Burrows, J.; Butchart, N.; Garcia, R.; Geller, M.; Gray, L.; Hamilton, K.; Harnik, N.; et al. 100 years of progress in understanding the stratosphere and mesosphere. Meteorol. Monogr. 2019, 59, 27.1–27.62. [Google Scholar]
- Schmidt, G.A.; Hoffmann, G.; Shindell, D.T.; Hu, Y. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Angert, A.; Cappa, C.D.; DePaolo, D.J. Kinetic 17O effects in the hydrologic cycle: Indirect evidence and implications. Geochim. Cosmochim. Acta 2004, 68, 3487–3495. [Google Scholar]
- Luz, B.; Barkan, E. Variations of 17O/16O and 18O/16O in meteoric waters. Geochim. Cosmochim. Acta 2010, 74, 6276–6286. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0016703710004643 (accessed on 7 June 2017).
- Landais, A.; Barkan, E.; Luz, B. Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett. 2008, 35. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL032096 (accessed on 7 June 2017).
- Uemura, R.; Barkan, E.; Abe, O.; Luz, B. Triple isotope composition of oxygen in atmospheric water vapor. Geophys. Res. Lett. 2010, 37, L04402. [Google Scholar] [CrossRef] [Green Version]
- Steig, E.J.; Jones, T.R.; Schauer, A.J.; Kahle, E.C.; Morris, V.A.; Vaughn, B.H.; Davidge, L.; White, J.W. Continuous-flow analysis of δ17O, δ18O and δD of H2O on an ice core from the South Pole. Front. Earth Sci. 2021, 9, 640292. Available online: https://www.frontiersin.org/articles/10.3389/feart.2021.640292/full (accessed on 21 March 2022).
- Miller, M.F.; Pack, A. Why measure 17O? Historical perspective, triple-isotope systematics and selected applications. Rev. Mineral. Geochem. 2021, 86, 1–34. [Google Scholar]
- Sherwood, S.C.; Roca, R.; Weckwerth, T.M.; Andronova, N.G. Tropospheric water vapor, convection, and climate. Rev. Geophys. 2009, 48, RG2001. [Google Scholar]
- Sharp, Z.D.; Wostbrock, J.A.G.; Pack, A. Mass-dependent triple oxygen isotope variations in terrestrial materials. Geochem. Perspect. Lett. 2018, 7, 27–32. [Google Scholar]
- Thiemens, M.H. History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 2006, 34, 217–262. [Google Scholar]
- Winkler, R.; Landais, A.; Risi, C.; Baroni, M.; Ekaykin, A.; Jouzel, J.; Petit, J.R.; Prie, F.; Minster, B.; Falourd, S. Interannual variation of water isotopologues at Vostok indicates a contribution from stratospheric water vapor. Proc. Natl. Acad. Sci. USA 2013, 110, 17674–17679. Available online: https://cp.copernicus.org/articles/8/1/2012/ (accessed on 7 June 2017).
- Pang, H.; Zhang, P.; Wu, S.; Jouzel, J.; Steen-Larsen, H.C.; Liu, K.; Zhang, W.; Yu, J.; An, C.; Chen, D.; et al. The dominant role of Brewer–Dobson circulation on 17O-excess variations in snow pits at Dome A, Antarctica. J. Geophys. Res. Atmos. 2022, 127, e2022JD036559. [Google Scholar]
- Lin, Y.; Clayton, R.N.; Huang, L.; Nakamura, N.; Lyons, J.R. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere. Proc. Natl. Acad. Sci. USA 2013, 110, 15608–15613. Available online: https://www.pnas.org/doi/full/10.1073/pnas.1313014110 (accessed on 7 June 2017).
- Aron, P.G.; Levin, N.E.; Beverly, E.J.; Huth, T.E.; Passey, B.H.; Pelletier, E.M.; Poulsen, C.J.; Winkelstern, I.Z.; Yarian, D.A. Triple oxygen isotopes in the water cycle. Chem. Geol. 2021, 565, 120026. [Google Scholar] [CrossRef]
- Meijer, H.A.J.; Li, W.J. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isot. Environ. Health Stud. 1998, 34, 349–369. [Google Scholar]
- Landais, A.; Ekaykin, A.; Barkan, E.; Winkler, R.; Luz, B. Seasonal variations of 17O-excess and d-excess in snow precipitation at Vostok station, East Antarctica. J. Glaciol. 2012, 58, 725–733. Available online: https://www.cambridge.org/core/journals/journal-of-glaciology/article/seasonal-variations-of-17-oexcess-and-dexcess-in-snow-precipitation-at-vostok-station-east-antarctica/F28723253C3A28D0E5C9A46FA58FABE9 (accessed on 7 June 2017).
- Schoenemann, S.W.; Steig, E.J.; Ding, Q.; Markle, B.R.; Schauer, A.J. Triple water-isotopologue record from WAIS Divide, Antarctica: Controls on glacial-interglacial changes in 17O-excess of precipitation. J. Geophys. Res. Atmos. 2014, 119, 8741–8763. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014JD021770 (accessed on 7 June 2017).
- Landais, A.; Steen-Larsen, H.C.; Guillevic, M.; Masson-Delmotte, V.; Vinther, B.; Winkler, R. Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland). Geochim. Cosmochim. Acta 2012, 77, 304–316. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0016703711006740?via%3Dihub (accessed on 7 June 2017).
- Guillevic, M.; Bazin, L.; Landais, A.; Stowasser, C.; Masson-Delmotte, V.; Blunier, T.; Eynaud, F.; Falourd, S.; Michel, E. Evidence for a three-phase sequence during Heinrich Stadial 4 using a multiproxy approach based on Greenland ice core records. Clim. Past 2014, 10, 2115–2133. [Google Scholar]
- Landais, A.; Capron, E.; Masson-Delmotte, V.; Toucanne, S.; Rhodes, R.; Popp, T.; Vinther, B.; Minster, B.; Prié, F. Ice core evidence for decoupling between midlatitude atmospheric water cycle and Greenland temperature during the last deglaciation. Clim. Past 2018, 14, 1405–1415. Available online: https://cp.copernicus.org/articles/14/1405/2018/ (accessed on 6 November 2021).
- Winkler, R.; Landais, A.; Sodemann, H.; Dümbgen, L.; Prié, F.; Masson-Delmotte, V.; Stenni, B.; Jouzel, J. Deglaciation records of 17O-excess in East Antarctica: Reliable reconstruction of oceanic normalized relative humidity from coastal sites. Clim. Past 2012, 8, 1–16. [Google Scholar]
- Touzeau, A.; Landais, A.; Stenni, B.; Uemura, R.; Fukui, K.; Fujita, S.; Guilbaud, S.; Ekaykin, A.; Casado, M.; Barkan, E.; et al. Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters. Cryosphere 2016, 10, 837–852. Available online: https://hal-insu.archives-ouvertes.fr/insu-01388903 (accessed on 7 June 2017).
- Pang, H.; Hou, S.; Landais, A.; Masson-Delmotte, V.; Jouzel, J.; Steen-Larsen, H.C.; Risi, C.; Zhang, W.; Wu, S.; Li, Y.; et al. Influence of summer sublimation on δD, δ18O, and δ17O in precipitation, East Antarctica, and implications for climate reconstruction from ice cores. J. Geophys. Res. Atmos. 2019, 124, 7339–7358. [Google Scholar]
- Tian, C.; Wang, L. Stable isotope variations of daily precipitation from 2014–2018 in the central United States. Sci. Data 2019, 6, 190018. Available online: https://www.nature.com/articles/s41598-018-25102-7#Sec20 (accessed on 11 September 2021).
- Giménez, R.; Bartolomé, M.; Gázquez, F.; Iglesias, M.; Moreno, A. Underlying climate controls in triple oxygen (16O, 17O, 18O) and hydrogen (1H, 2H) isotopes composition of rainfall (Central Pyrenees). Front. Earth Sci. 2021, 9, 633698. Available online: https://www.frontiersin.org/articles/10.3389/feart.2021.633698/full#supplementary-material (accessed on 20 December 2021).
- Barkan, E.; Luz, B. Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Commun. Mass Spectrom. 2007, 21, 2999–3005. [Google Scholar] [CrossRef]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere—troposphere exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar]
- Rosenlof, K.H. Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res. Atmos. 1995, 100, 5173–5191. [Google Scholar]
- Franz, P.; Röckmann, T. High-precision isotope measurements of H216O, H217O, H218O, and the Δ17O-anomaly of water vapor in the southern lowermost stratosphere. Atmos. Chem. Phys. 2005, 5, 2949–2959. [Google Scholar] [CrossRef] [Green Version]
- Brinjikji, M.; Lyons, J.R. Mass-independent fractionation of oxygen isotopes in the atmosphere. Rev. Mineral. Geochem. 2021, 86, 197–216. [Google Scholar]
- Zahn, A.; Franz, P.; Bechtel, C.; Grooß, J.U.; Röckmann, T. Modelling the budget of middle atmospheric water vapour isotopes. Atmos. Chem. Phys. 2006, 6, 2073–2090. [Google Scholar]
- Matejka, T.J.; Houze, R.A., Jr.; Hobbs, P.V. Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Q. J. R. Meteorol. Soc. 1980, 106, 29–56. [Google Scholar]
- Houze, R.A., Jr. Cloud Dynamics; Elsevier: Oxford, UK, 2014. [Google Scholar]
- Lal, D.; Peters, B. Encyclopedia of Physics; Springer: Berlin/Heidelberg, Germany, 1967; Volume 42. [Google Scholar]
- Fourré, E.; Landais, A.; Cauquoin, A.; Jean-Baptiste, P.; Lipenkov, V.; Petit, J.R. Tritium records to trace stratospheric moisture inputs in Antarctica. J. Geophys. Res. Atmos. 2018, 123, 3009–3018. [Google Scholar]
- Aggarwal, P.K.; Romatschke, U.; Araguas-Araguas, L.; Belachew, D.; Longstaffe, F.J.; Berg, P.; Schumacher, C.; Funk, A. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 2016, 9, 624–629. [Google Scholar]
- Luz, B.; Barkan, E.; Bender, M.L.; Thiemens, M.H.; Boering, K.A. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 1999, 400, 547–550. [Google Scholar]
- Kaseke, K.F.; Wang, L.; Wanke, H.; Tian, C.; Lanning, M.; Jiao, W. Precipitation origins and key drivers of precipitation isotope (18O, 2H, and 17O) compositions over Windhoek. J. Geophys. Res. Atmos. 2018, 123, 7311–7330. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JD028470 (accessed on 1 June 2021).
- Bhattacharya, S.; Pal, M.; Panda, B.; Pradhan, M. Spectroscopic investigation of hydrogen and triple-oxygen isotopes in atmospheric water vapor and precipitation during Indian monsoon season. Isot. Environ. Health Stud. 2021, 57, 368–385. Available online: https://www.tandfonline.com/doi/abs/10.1080/10256016.2021.1931169 (accessed on 23 November 2021). [CrossRef] [PubMed]
- He, S.; Jackisch, D.; Samanta, D.; Yi, P.K.Y.; Liu, G.; Wang, X.; Goodkin, N.F. Understanding tropical convection through triple oxygen isotopes of precipitation from the Maritime Continent. J. Geophys. Res. Atmos. 2021, 126, e2020JD033418. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JD033418 (accessed on 23 November 2021).
- Aron, P.G.; Poulsen, C.J.; Fiorella, R.P.; Levin, N.E.; Acosta, R.P.; Yanites, B.J.; Cassel, E.J. Variability and Controls on δ18O, d-excess, and ∆′17O in Southern Peruvian Precipitation. J. Geophys. Res. Atmos. 2021, 126, e2020JD034009. Available online: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JD034009 (accessed on 4 April 2022).
- Uechi, Y.; Uemura, R. Domnant influence of the humidity in the moisture source region on the 17O-excess in precipitation on a subtropical island. Earth Planet. Sci. Let. 2019, 513, 20–28. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0012821x19301098 (accessed on 27 November 2021). [CrossRef]
- Surma, J.; Assonov, S.; Herwartz, D.; Voigt, C.; Staubwasser, M. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci. Rep. 2018, 8, 4972. [Google Scholar] [CrossRef] [Green Version]
- Voigt, C.; Herwartz, D.; Dorador, C.; Staubwasser, M. Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system. Hydrol. Earth Syst. Sci. 2021, 25, 1211–1228. Available online: https://hess.copernicus.org/articles/25/1211/2021/ (accessed on 7 June 2021).
- Coplen, T.B.; Neiman, P.J.; White, A.B.; Ralph, F.M. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector. Tellus B Chem. Phys. Meteorol. 2015, 67, 28574. [Google Scholar] [CrossRef] [Green Version]
- Landais, A.; Lathiere, J.; Barkan, E.; Luz, B. Reconsidering the change in global biosphere productivity between the Last Glacial Maximum and present day from the triple oxygen isotopic composition of air trapped in ice cores. Glob. Biogeochem. Cycles 2007, 21, GB1025. [Google Scholar]
- Landais, A.; Barkan, E.; Yakir, D.; Luz, B. The triple isotopic composition of oxygen in leaf water. Geochim. Cosmochim. Acta 2006, 70, 4105–4115. [Google Scholar]
- Goering, M.A.; Gallus, W.A., Jr.; Olsen, M.A.; Stanford, J.L. Stanford, Role of stratospheric air in a severe weather event: Analysis of potential vorticity and total ozone. J. Geophys. Res. Atmos. 2001, 106, 11813–11823. [Google Scholar]
- Becagli, S.; Proposito, M.; Benassai, S.; Flora, O.; Genoni, L.; Gragnani, R.; Largiuni, O.; Pili, S.L.; Severi, M.; Stenni, B.; et al. Chemical and isotopic snow variability in East Antarctica along the 2001/02 ITASE traverse. Ann. Glaciol. 2004, 39, 473–482. [Google Scholar]
- Proposito, M.; Becagli, S.; Castellano, E.; Flora, O.; Genoni, L.; Gragnani, R.; Stenni, B.; Traversi, R.; Udisti, R.; Frezzotti, M. Chemical and isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay to Dome C, East Antartica. Ann. Glaciol. 2002, 35, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Roscoe, H.K. Possible descent across the “Tropopause” in Antarctic winter. Adv. Space Res. 2004, 33, 1048–1052. [Google Scholar] [CrossRef]
- Buizert, C.; Fudge, T.J.; Roberts, W.H.; Steig, E.J.; Sherriff-Tadano, S.; Ritz, C.; Lefebvre, E.; Edwards, J.; Kawamura, K.; Oyabu, I.; et al. Antarctic surface temperature and elevation during the Last Glacial Maximum. Science 2021, 372, 1097–1101. Available online: https://www.science.org/doi/abs/10.1126/science.abd2897 (accessed on 20 March 2022).
- Guillevic, M.; Bazin, L.; Landais, A.; Kindler, P.; Orsi, A.; Masson-Delmotte, V.; Blunier, T.; Buchardt, S.L.; Capron, E.; Leuenberger, M.; et al. Spatial gradients of temperature, accumulation and δ18O-ice in Greenland over a series of Dansgaard-Oeschger events. Clim. Past 2013, 9, 1029–1051. [Google Scholar]
- Orsi, A.J.; Kawamura, K.; Masson-Delmotte, V.; Fettweis, X.; Box, J.E.; Dahl-Jensen, D.; Clow, G.D.; Landais, A.; Severinghaus, J.P. The recent warming trend in North Greenland. Geophys. Res. Lett. 2017, 44, 6235–6243. [Google Scholar] [CrossRef]
- Fu, Q.; White, R.H.; Wang, M.; Alexander, B.; Solomon, S.; Gettelman, A.; Battisti, D.S.; Lin, P. The Brewer-Dobson circulation during the last glacial maximum. Geophys. Res. Lett. 2020, 47, e2019GL086271. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Sodemann, H. Characteristics of atmospheric transport into the Antarctic troposphere. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar]
- He, F.; Clark, P.U. Freshwater forcing of the Atlantic meridional overturning circulation revisited. Nat. Clim. Chang. 2022, 12, 449–454. [Google Scholar]
- Capron, E.; Rasmussen, S.O.; Popp, T.J.; Erhardt, T.; Fischer, H.; Landais, A.; Pedro, J.B.; Vettoretti, G.; Grinsted, A.; Gkinis, V.; et al. The anatomy of past abrupt warmings recorded in Greenland ice. Nat. Commun. 2021, 12, 2106. [Google Scholar] [CrossRef] [PubMed]
- Reichler, T.; Kim, J.; Manzini, E.; Kröger, J. A stratospheric connection to Atlantic climate variability. Nat. Geosci. 2012, 5, 783–787. [Google Scholar] [CrossRef]
R2 | Slope | Std. Error | p-Value | Intercept | Std. Error | p-Value | |
---|---|---|---|---|---|---|---|
Tropical | 0.998 | 0.521 | 0.002 | <0.01 | −0.015 | 0.011 | 0.13 |
Tropical + subtropical | 0.998 | 0.521 | 0.001 | <0.01 | −0.012 | 0.008 | 0.17 |
Tropical + high elevation | 0.998 | 0.523 | 0.001 | <0.01 | −0.011 | 0.009 | 0.32 |
Tropical + subtropical + high elevation | 0.998 | 0.523 | 0.001 | <0.01 | −0.008 | 0.008 | 0.48 |
Extratropical | 1.0 | 0.527 | 0.000 | <0.01 | 0.027 | 0.001 | <0.01 |
Tropical + subtropical + high elev. + extratropical | 0.999 | 0.525 | 0.001 | <0.01 | −0.004 | 0.004 | 0.31 |
Tropical + subtropical + extratropical (δ’18O < −4‰) | 0.998 | 0.528 | 0.001 | <0.01 | 0.032 | 0.006 | <0.01 |
Extratropical (δ’18O < −4‰) | 1.0 | 0.529 | 0.001 | <0.01 | 0.045 | 0.001 | <0.01 |
Tropical (δ’18O > −4‰) | 0.998 | 0.516 | 0.003 | <0.01 | −0.001 | 0.011 | 0.93 |
Extratropical(δ’18O > −4‰) | 1.0 | 0.520 | 0.001 | <0.01 | 0.001 | 0.002 | 0.52 |
Tropical + subtropical (δ’18O > −4‰) | 0.999 | 0.516 | 0.002 | <0.01 | −0.002 | 0.008 | 0.80 |
Tropical + subtropical + extratropical (δ’18O > −4‰) | 0.999 | 0.516 | 0.001 | <0.01 | −0.003 | 0.004 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggarwal, P.K.; Longstaffe, F.J.; Schwartz, F.W. Ice Core 17O Reveals Past Changes in Surface Air Temperatures and Stratosphere to Troposphere Mass Exchange. Atmosphere 2023, 14, 1268. https://doi.org/10.3390/atmos14081268
Aggarwal PK, Longstaffe FJ, Schwartz FW. Ice Core 17O Reveals Past Changes in Surface Air Temperatures and Stratosphere to Troposphere Mass Exchange. Atmosphere. 2023; 14(8):1268. https://doi.org/10.3390/atmos14081268
Chicago/Turabian StyleAggarwal, Pradeep K., Frederick J. Longstaffe, and Franklin W. Schwartz. 2023. "Ice Core 17O Reveals Past Changes in Surface Air Temperatures and Stratosphere to Troposphere Mass Exchange" Atmosphere 14, no. 8: 1268. https://doi.org/10.3390/atmos14081268
APA StyleAggarwal, P. K., Longstaffe, F. J., & Schwartz, F. W. (2023). Ice Core 17O Reveals Past Changes in Surface Air Temperatures and Stratosphere to Troposphere Mass Exchange. Atmosphere, 14(8), 1268. https://doi.org/10.3390/atmos14081268