Moisture Source Analysis of Two Case Studies of Major Extreme Precipitation Events in Summer in the Iberian Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.2. Dynamic Downscaling with the WRF Model
2.3. Experimental Setup for FLEXPART-WRF
2.4. Determination of Moisture Sources
3. Results and Discussion
3.1. Evaluation of the WRF-ARW Configuration Used
3.2. Study Case I: 18 September 1999
3.2.1. Synoptic Situation and Meteorological Variables
3.2.2. Moisture Sources Causing Precipitation
3.3. Study Case II: 7 September 1989
3.3.1. Synoptic Situation and Meteorological Variables
3.3.2. Moisture Sources Causing Precipitation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gimeno, L.; Stohl, A.; Trigo, R.M.; Dominguez, F.; Yoshimura, K.; Yu, L.; Drumond, A.; Durán-Quesada, A.M.; Nieto, R. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 2012, 50, RG4003. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, L.; Nieto, R.; Trigo, R.; Vicente-Serrano, S.M.; López-Moreno, J.I. Where does the Iberian Peninsula moisture come from? An answer based on a Lagrangian approach. J. Hydrometeorol. 2010, 11, 421–436. [Google Scholar] [CrossRef] [Green Version]
- Rios-Entenza, A.; Miguez-Macho, G. Moisture recycling and the maximum of precipitation in spring in the Iberian Peninsula. Clim. Dyn. 2014, 42, 3207–3231. [Google Scholar] [CrossRef]
- Rios-Entenza, A.; Soares, P.M.; Trigo, R.M.; Cardoso, R.M.; Miguez-Macho, G. Moisture recycling in the Iberian Peninsula from a regional climate simulation: Spatiotemporal analysis and impact on the precipitation regime. J. Geophys. Res. Atmos. 2014, 119, 5895–5912. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P. The Climate of the Mediterranean Region: From the Past to the Future; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Trigo, R.M.; Valente, M.A.; Trigo, I.F.; Miranda, P.M.A.; Ramos, A.M.; Paredes, D.; García-Herrera, R. The impact of North Atlantic wind and cyclone trends on european precipitation and significant wave height in the atlantic, trends and directions in climate research. Ann. N. Y. Acad. Sci. 2008, 1146, 212–234. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Ramos, A.M.; Zêzere, J.L.; Trigo, R.M.; Vaquero, J.M. Spatial impact and triggering conditions of the exceptional hydrogeomorphological event of December 1909 in Iberia. Nat. Hazards Earth Syst. Sci. 2016, 16, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Ramos, C.; Pereira, S.S.; Ramos, A.M.; Zêzere, J.L.; Liberato, M.L.R. The deadliest storm of the 20th century striking Portugal; flood impacts and atmospheric circulation. J. Hydrol. 2016, 541, 597–610. [Google Scholar] [CrossRef]
- García-Herrera, R.; Barriopedro, D.; Hernández, E.; Paredes, D.; Correoso, J.F.; Prieto, L. The 2001 mesoscale convective systems over Iberia and the Balearic Islands. Meteorol. Atmos. Phys. 2005, 90, 225–243. [Google Scholar] [CrossRef]
- Paredes, D.; Trigo, R.M.; García-Herrera, R.; Trigo, I.F. Understanding precipitation changes in Iberia in early spring: Weather typing and storm-tracking approaches. J. Hydrometeorol. 2006, 7, 101–113. [Google Scholar] [CrossRef] [Green Version]
- de Luis, M.; Brunetti, M.; Gonzalez-Hidalgo, J.C.; Longares, L.A.; Martin-Vide, J. Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob. Planet. Chang. 2010, 74, 27–33. [Google Scholar] [CrossRef]
- Ramos, A.M.; Martins, M.J.; Tomé, R.; Trigo, R.M. Extreme precipitation events in summer in the Iberian Peninsula and its relationship with atmospheric rivers. Front. Earth Sci. 2018, 6, 110. [Google Scholar]
- Keune, J.; Schumacher, D.L.; Miralles, D.G. A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models. Geosci. Model Dev. 2022, 15, 1875–1898. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeorol. 2004, 5, 656–678. [Google Scholar] [CrossRef]
- Stohl, A. Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ. 1998, 32, 947–966. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Liberato, M.L.R. A ranking of high resolution daily precipitation extreme events for the Iberian Peninsula. Atmos. Sci. Lett. 2014, 15, 328–334. [Google Scholar] [CrossRef]
- Insua-Costa, D.; Miguez-Macho, G.; Llasat, M.C. Local and remote moisture sources for extreme precipitation: A study of the two catastrophic 1982 western Mediterranean episodes. Hydrol. Earth Syst. Sci. 2019, 23, 3885–3900. [Google Scholar] [CrossRef] [Green Version]
- Cloux, S.; Garaboa-Paz, D.; Insua-Costa, D.; Miguez-Macho, G.; Pérez-Muñuzuri, V. Extreme precipitation events in the Mediterranean area: Contrasting two different models for moisture source identification. Earth Syst. Sci. 2021, 25, 6465–6477. [Google Scholar] [CrossRef]
- Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J.D.; et al. The lagrangian particle dispersion model flexpart-wrf version 3.1. Geosci. Model Dev. 2013, 6, 1889–1904. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Alvarez, J.C.; Vázquez, M.; Pérez-Alarcón, A.; Nieto, R.; Gimeno, L. Comparison of Moisture Sources and Sinks Estimated with Different Versions of FLEXPART and FLEXPART-WRF Models Forced with ECMWF Reanalysis Data. J. Hydrometeorol. 2023, 24, 221–239. [Google Scholar] [CrossRef]
- Molina, J.J.C. Convección profunda sobre el Mediterráneo español: Lluvias torrenciales durante los días 4 al 7 de septiembre de 1989 en Andalucía oriental, Murcia, Levante, Cataluña y Mallorca. Paralelo 1989, 37, 51–80. [Google Scholar]
- Nieto, R.; Gimeno, L.; de la Torre, L.; Ribera, P.; Gallego, D.; García-Herrera, R.; García, J.A.; Nuñez, M.; Redaño, A.; Lorente, J. Climatological features of cutoff low systems in the Northern Hemisphere. J. Clim. 2005, 18, 3085–3103. [Google Scholar] [CrossRef] [Green Version]
- Nieto, R.; Gimeno, L.; Añel, J.A.; de la Torre, L.; Gallego, D.; Barriopedro, D.; Gallego, M.C.; Gordillo, A.; Redaño, A.; Delgado, G. Analysis of the precipitation and cloudiness associated with COLs occurrence in the Iberian Peninsula. Meteorol. Atmos. Phys. 2007, 96, 103–119. [Google Scholar] [CrossRef]
- Efemerides AEMET. Available online: https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/efemerides_sucesos*?dateDia=6&dateMes=8&dateAnyo=1989&palabra=Introduzca+texto (accessed on 10 March 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. Description of the Advanced Research WRF Version 3; Technical Report; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Fernández-Alvarez, J.C.; Pérez-Alarcón, A.; Eiras-Barca, J.; Ramos, A.M.; Rahimi-Esfarjani, S.; Nieto, R.; Gimeno, L. Changes in moisture sources of atmospheric rivers landfalling the Iberian Peninsula with WRF-FLEXPART. J. Geophys. Res. Atmos. 2023, 128, e2022JD037612. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, P.A.; Dudhia, J.; Gonzalez-Rouco, J.F.; Navarro, J.; Montavez, J.P.; Garcia–Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified Noah land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar]
- Miguez-Macho, G.; Stenchikov, G.L.; Robock, A. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res. Atmos. 2004, 109, D13104. [Google Scholar] [CrossRef] [Green Version]
- Insua-Castro, D.; Miguez-Macho, G. A new moisture tagging capability in the Weather Research and Forecasting model: Formulation, validation and application to the 2014 Great Lake-effect snowstorm. Earth Syst. Dyn. 2018, 9, 167–185. [Google Scholar] [CrossRef] [Green Version]
- Jankov, I.; Gallus, W.A., Jr.; Segal, M.; Koch, S.E. Influence of initial conditions on the WRF–ARW model QPF response to physical parameterization changes. Weather. Forecast. 2007, 22, 501–519. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Yang, Z.L.; Dickinson, R.E.; Henderson-Sellers, A.; Pitman, A.J. Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). J. Geophys. Res. Atmos. 1995, 100, 16553–16578. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Introduction to special section: Regional climate modeling revisited. J. Geophys. Res. Atmos. 1999, 104, 6335–6352. [Google Scholar] [CrossRef]
- Denis, B.; Laprise, R.; Caya, D.; Côté, J. Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Clim. Dyn. 2002, 18, 627–646. [Google Scholar]
- Hanna, S.R. Applications in air pollution modelling. In Atmospheric Turbulence and Air Pollution Modelling; Reidel Publishing Company: Dordrecht, The Netherlands, 1982; pp. 275–310. [Google Scholar]
- Stohl, A.; James, P.A. A Lagrangian analysis of the atmospheric branch of the global water cycle: Part II: Earth’s river catchments ocean basins, and moisture transports between them. J. Hydrometeorol. 2005, 6, 961–984. [Google Scholar] [CrossRef]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- van der Ent, R.J.; Tuinenburg, O. A The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci. 2017, 21, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, L.; Eiras-Barca, J.; Durán-Quesada, A.M.; Dominguez, F.; van der Ent, R.; Sodemann, H.; Sánchez-Murillo, R.; Nieto, R.; Kirchner, J.W. The residence time of water vapour in the atmosphere. Nat. Rev. Earth Environ. 2021, 2, 558–569. [Google Scholar] [CrossRef]
- Läderach, A.; Sodemann, H. A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett. 2016, 43, 924–933. [Google Scholar] [CrossRef] [Green Version]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos. 2008, 113, D03107. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Alarcón, A.; Sorí, R.; Fernández-Alvarez, J.C.; Nieto, R.; Gimeno, L. Where does the moisture for North Atlantic tropical cyclones come from? J. Hydrometeorol. 2022, 23, 457–472. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Fernández-Alvarez, J.C.; Sorí, R.; Nieto, R.; Gimeno, L. Moisture source identification for precipitation associated with tropical cyclone development over the Indian Ocean: A Lagrangian approach. Clim. Dyn. 2022, 60, 2735–2758. [Google Scholar] [CrossRef]
- Fernández-Alvarez, J.C.; Pérez-Alarcón, A.; Nieto, R.; Gimeno, L. TROVA: TRansport Of water VApor. SoftwareX 2022, 20, 101228. [Google Scholar] [CrossRef]
- Forecast Verification—Issues, Methods and FAQ. Forecast Verification—Methods and FAQ. Available online: https://www.cawcr.gov.au/ (accessed on 30 April 2023).
- Ramos, A.M.; Nieto, R.; Tomé, R.; Gimeno, L.; Trigo, R.M.; Liberato, M.L.; Lavers, D.A. Atmospheric rivers moisture sources from a Lagrangian perspective. Earth Syst. Dyn. 2016, 7, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Nieto, R.; Gimeno, L.; Drumond, A.; Hernandez, E. A Lagrangian identification of the main moisture sources and sinks affecting the Mediterranean area. WSEAS Trans. Environ. Dev. 2010, 6, 365–374. [Google Scholar]
- Gimeno, L.; Nieto, R.; Vázquez, M.; Lavers, D.A. Atmospheric Rivers: A mini-review. Front. Earth Sci. 2014, 2, 2. [Google Scholar] [CrossRef]
Variables | R | B | MAE | RSME |
---|---|---|---|---|
VIMT (kg m−1 s−1) | 0.92 | −3.04 | 35.54 | 64.15 |
Q850 (g/kg) | 0.85 | −0.38 | 1.19 | 1.77 |
TCW (kg/m2) | 0.84 | 1.27 | 4.66 | 7.45 |
TP (mm) | 0.69 | 0.23 | 2.71 | 8.26 |
HGP_500 (m) | 0.99 | 0.003 | 0.003 | 0.004 |
HGP_300 (m) | 0.99 | 0.0002 | 0.002 | 0.002 |
MSLP (hPa) | 0.95 | −1.00 | 1.19 | 2.24 |
Variables | R | B | MAE | RSME |
---|---|---|---|---|
VIMT (kg m−1 s−1) | 0.84 | −5.25 | 36.96 | 71.73 |
Q850 (g/kg) | 0.83 | −0.44 | 1.26 | 1.94 |
TCW (kg/m2) | 0.82 | 1.01 | 4.90 | 7.81 |
TP (mm) | 0.65 | 0.33 | 2.64 | 7.30 |
HGP _500 (m) | 0.99 | 0.003 | 0.003 | 0.004 |
HGP _300 (m) | 0.99 | 0.001 | 0.002 | 0.002 |
MSLP (hPa) | 0.94 | −0.99 | 1.18 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Socorro, G.; Fernández-Alvarez, J.C.; Nieto, R. Moisture Source Analysis of Two Case Studies of Major Extreme Precipitation Events in Summer in the Iberian Peninsula. Atmosphere 2023, 14, 1213. https://doi.org/10.3390/atmos14081213
Alvarez-Socorro G, Fernández-Alvarez JC, Nieto R. Moisture Source Analysis of Two Case Studies of Major Extreme Precipitation Events in Summer in the Iberian Peninsula. Atmosphere. 2023; 14(8):1213. https://doi.org/10.3390/atmos14081213
Chicago/Turabian StyleAlvarez-Socorro, Gleisis, José C. Fernández-Alvarez, and Raquel Nieto. 2023. "Moisture Source Analysis of Two Case Studies of Major Extreme Precipitation Events in Summer in the Iberian Peninsula" Atmosphere 14, no. 8: 1213. https://doi.org/10.3390/atmos14081213
APA StyleAlvarez-Socorro, G., Fernández-Alvarez, J. C., & Nieto, R. (2023). Moisture Source Analysis of Two Case Studies of Major Extreme Precipitation Events in Summer in the Iberian Peninsula. Atmosphere, 14(8), 1213. https://doi.org/10.3390/atmos14081213