Correlations between Summer Discharge and South Asian Summer Monsoon Subsystems in Mekong River Basin
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Region
2.2. Data
3. Methodology
3.1. Mann-Kendall (M-K) Test
3.2. Sen’s Slope Estimator
3.3. Innovative Trend Analysis (ITA)
3.4. Wavelet Analysis
4. Results and Discussion
4.1. Spatial–Temporal Variations of Summer Discharge in MRB
4.2. Oscillations of Summer Discharge and SAMI1/SAMI2
4.3. Time–Frequency Analysis of summer Discharge and SAMI1/SAMI2
4.4. Correlation between Summer Discharge and SAMI1/SAMI2
5. Conclusions
- Both the results from the M-K test, Sen’s slope estimator, and ITA method confirmed a negative trend of summer discharge at the six stations during the study periods. Specifically, Vientiane, Mukdahan, and Pakse experienced a higher risk of flooding due to increased levels of discharge after 1970.
- The M-K mutation test identified mutation years in the 1980s and around 2010 for Chiang Sean and Vientiane, while Mukdahan, Pakse, and Kratie had mutation points in the late 1950s and around 2000. Notably, Luang Prabang’s mutation point did not appear until 2015. The mutation years in the 2010s at Chiang Sean, Luang Prabang, and Vientiane resulted from the large dams, Xiaowan and Nuozhadu, which were built in 2010 and 2014, respectively.
- The CWT analysis reveals several intermittent oscillations at the 1–6-year timescale in summer discharge at the six stations, SAMI1 and SAMI2 during 1970–2016. Through the XWT analysis, significant relationships between SAMI1/SAMI2 and summer discharge are found to exist primarily in the high-frequency region. The XWT of SAMI1-summer discharge exhibits two distinct oscillations at a timescale of 1–4 years during 1960–1980 and around the 2010s, while the XWT of SAMI2-summer discharge shows two distinct oscillations at the timescales of ~4 years around 1990 and 2–4 years around 2010.
- The significant coherence between the summer discharge in the MRB and SAMI1/SAMI2 mainly occurs at high-frequency regions with timescales of 2–6 or ~8 years exhibiting various phases. SAMI1 can be used to predict summer discharge at Chiang Sean with a lag time of ~6 years. In contrast, SAMI2 has a better correlation with the summer discharge at a 1–8-year scale, especially at Mukdahan and Kratie during 1980–2016.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, H.; He, D.; Wang, H. Environmental consequences of damming the mainstream Lancang-Mekong River: A review. Earth-Sci. Rev. 2015, 146, 77–91. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Zhu, C.; He, Q. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam? J. Hydrol. 2018, 560, 259–274. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Stromberg, J.C. The natural flow regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Archfield, S.A. Not higher but more often. Nat. Clim. Change 2015, 5, 198–199. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Hoang, L.P.; Lauri, H.; Kummu, M.; Koponen, J.; van Vliet, M.T.H.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 2016, 20, 3027–3041. [Google Scholar] [CrossRef]
- Rasanen, T.A.; Someth, P.; Lauri, H.; Koponen, J.; Sarkkula, J.; Kummu, M. Observed river discharge changes due to hydropower operations in the Upper Mekong Basin. J. Hydrol. 2017, 545, 28–41. [Google Scholar] [CrossRef]
- Cai, J.; Varis, O.; Yin, H. China’s water resources vulnerability: A spatio-temporal analysis during 2003–2013. J. Clean. Prod. 2017, 142, 2901–2910. [Google Scholar] [CrossRef]
- Li, R.; Huang, H.; Yu, G.; Yu, H.; Bridhikitti, A.; Su, T. Trends of Runoff Variation and Effects of Main Causal Factors in Mun River, Thailand During 1980–2018. Water 2020, 12, 831. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Sci. Total Environ. 2018, 643, 171–182. [Google Scholar] [CrossRef]
- Li, D.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed changes in flow regimes in the Mekong River basin. J. Hydrol. 2017, 551, 217–232. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Ruby Leung, L.; Li, H.-Y.; Zhao, J.; Tian, F.; Yang, K.; Sothea, K. Dam Construction in Lancang-Mekong River Basin Could Mitigate Future Flood Risk From Warming-Induced Intensified Rainfall. Geophys. Res. Lett. 2017, 44, 10–378. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Q.; Chen, A.; Tang, Y.; Xu, X.; Yun, X.; Mu, M.; Wright, N.; Chen, D. Impacts of Summer Monsoons on flood characteristics in the Lancang-Mekong River Basin. J. Hydrol. 2022, 604, 127256. [Google Scholar] [CrossRef]
- Delgado, J.M.; Merz, B.; Apel, H. A climate-flood link for the lower Mekong River. Hydrol. Earth Syst. Sci. 2012, 16, 1533–1541. [Google Scholar] [CrossRef]
- Kingston, D.G.; Thompson, J.R.; Kite, G. Uncertainty in climate change projections of discharge for the Mekong River Basin, Hydrol. Earth Syst. Sci. 2011, 15, 1459–1471. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Global Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, W.-K.; Gui, S.; Tao, Y.; Cao, J. Rainy season precipitation variation in the Mekong River basin and its relationship to the Indian and East Asian summer monsoons. Clim. Dyn. 2018, 52, 5691–5708. [Google Scholar] [CrossRef]
- Li, J.P.; Zeng, Q.C. A unified monsoon index. Geophys. Res. Lett. 2002, 29, 1274. [Google Scholar] [CrossRef]
- Li, F.X.; Zhang, S.Y.; Chen, D.; He, L.; Gu, L.L. Inter-Decadal Variability of the East Asian Summer Monsoon and Its Impact on Hydrologic Variables in the Haihe River Basin, China. J. Resour. Ecol. 2017, 8, 174–184. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1948. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Çeliker, M.; Yükseler, U.; Dursun, Ö.F. Trend analyses for discharge-recharge of Tacin karstic spring (Kayseri, Turkey). J. Afr. Earth. Sci. 2021, 184, 104344. [Google Scholar] [CrossRef]
- Tayyab, M.; Zhou, J.; Zeng, X.; Ahmed, I.; Adnan, R. Application of Statistical nonparametric tests in Dongting Lake, China: 1961–2012. In Proceedings of the 2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA), Singapore, 28–30 September 2016; pp. 197–201. [Google Scholar]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ouillon, S.; Vu, V.D. Sea Level Variation and Trend Analysis by Comparing Mann-Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water 2022, 14, 1709. [Google Scholar] [CrossRef]
- Agbo, E.P.; Nkajoe, U.; Edet, C.O. Comparison of Mann-Kendall and Şen’s innovative trend method for climatic parameters over Nigeria’s climatic zones. Clim. Dyn. 2022. [Google Scholar] [CrossRef]
- Abebe, S.A.; Qin, T.; Zhang, X.; Yan, D. Wavelet transform-based trend analysis of streamflow and precipitation in Upper Blue Nile River basin. J. Hydrol. Reg. Stud. 2022, 44, 101251. [Google Scholar] [CrossRef]
- Tayyab, M.; Zhou, J.; Adnan, R.; Zeng, X. Application of Artificial Intelligence Method Coupled with Discrete Wavelet Transform Method. Procedia Comput. Sci. 2017, 107, 212–217. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Hazarika, B.B.; Gupta, D.; Heddam, S.; Kisi, O. Streamflow prediction in mountainous region using new machine learning and data preprocessing methods: A case study. Neural Comput. Appl. 2022, 35, 9053–9070. [Google Scholar] [CrossRef]
- Su, L.; Miao, C.; Duan, Q.; Lei, X.; Li, H. Multiple-Wavelet Coherence of World’s Large Rivers with Meteorological Factors and Ocean Signals. J. Geophys. Res. Atmos. 2019, 124, 4932–4954. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Ahmad, S. Wavelet analyses of western US streamflow with ENSO and PDO. J. Water Clim. Chang. 2017, 8, 26–39. [Google Scholar] [CrossRef]
- Labat, D. Wavelet analysis of the annual discharge records of the world’s largest rivers. Adv. Water Resour. 2008, 31, 109–117. [Google Scholar] [CrossRef]
- Al-Ghorani, N.G.; Hassan, M.A.; Langendoen, E.J. Spatiotemporal Patterns of Fractional Suspended Sediment Dynamics in Small Watersheds. Water Resour. Res. 2021, 57, e2021WR030851. [Google Scholar] [CrossRef]
- Tian, Q.; Xu, K.H.; Dong, C.M.; Yang, S.L.; He, Y.J.; Shi, B.W. Declining Sediment Discharge in the Yangtze River From 1956 to 2017: Spatial and Temporal Changes and Their Causes. Water Resour. Res. 2021, 57, e2020WR028645. [Google Scholar] [CrossRef]
- Guo, C.; Jin, Z.; Guo, L.; Lu, J.; Ren, S.; Zhou, Y. On the cumulative dam impact in the upper Changjiang River: Streamflow and sediment load changes. Catena 2020, 184, 104250. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, C.; Yu, W.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607–608, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, W. Characteristics of Climate Change in the Lancang-Mekong Sub-Region. Climate 2020, 8, 115. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Y.; Li, W. Impact of anthropogenic activities on the hydrologic characters of the mainstream of the Tarim River in Xinjiang during the past 50 years. Environ. Geol. 2009, 57, 435–445. [Google Scholar] [CrossRef]
- Deng, H.; Tang, Q.; Yun, X.; Tang, Y.; Liu, X.; Xu, X.; Sun, S.; Zhao, G.; Zhang, Y.; Zhang, Y. Wetting trend in Northwest China reversed by warmer temperature and drier air. J. Hydrol. 2022, 613, 128435. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Raj, B., Koerts, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 345–381. [Google Scholar]
- Meng, Q.; Bai, H.; Sarukkalige, R.; Fu, G.; Jia, W.; Zhang, C. Annual and seasonal precipitation trends and their attributions in the Qinling Mountains, a climate transitional zone in China. Theor. Appl. Climatol. 2021, 144, 401–413. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- Li, F.X.; He, L. The Effects of Dominant Driving Forces on Summer Precipitation during Different Periods in Beijing. Atmosphere 2017, 8, 44. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal Changes in the ENSO–Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Ty, T.V.; Sunada, K.; Ichikawa, Y.; Oishi, S. Scenario-based Impact Assessment of Land Use/Cover and Climate Changes on Water Resources and Demand: A Case Study in the Srepok River Basin, Vietnam—Cambodia. Water Resour. Manag. 2012, 26, 1387–1407. [Google Scholar] [CrossRef]
- Lu, X.X.; Chua, S.D.X. River Discharge and Water Level Changes in the Mekong River: Droughts in an Era of Mega-Dams. Hydrol. Process. 2021, 35, e14265. [Google Scholar] [CrossRef]
- Adamson, P.T.; Rutherfurd, I.D.; Peel, M.C.; Conlan, I.A. Chapter 4—The Hydrology of the Mekong River. In The Mekong; Campbell, I.C., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 53–76. [Google Scholar]
- Lu, X.X.; Siew, R.Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: Possible impacts of the Chinese dams. Hydrol. Earth Syst. Sci. 2006, 10, 181–195. [Google Scholar] [CrossRef]
Data Content | Station | Time Series | Time Scale |
---|---|---|---|
Discharge | Chiang Sean | 1960–2016 | Daily |
Luang Prabang | 1950–2016 | ||
Vientiane | 1913–2016 | ||
Mukdahan | 1923–2016 | ||
Paske | 1923–2016 | ||
Kratie | 1924–2016 | ||
Southwest Asian Summer Monsoon (SASMI1) | - | 1948–2022 | Monthly |
Southeast Asian Summer Monsoon (SASMI2) | - | 1948–2022 | Monthly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, A.; He, L. Correlations between Summer Discharge and South Asian Summer Monsoon Subsystems in Mekong River Basin. Atmosphere 2023, 14, 958. https://doi.org/10.3390/atmos14060958
Guo A, He L. Correlations between Summer Discharge and South Asian Summer Monsoon Subsystems in Mekong River Basin. Atmosphere. 2023; 14(6):958. https://doi.org/10.3390/atmos14060958
Chicago/Turabian StyleGuo, Anan, and Li He. 2023. "Correlations between Summer Discharge and South Asian Summer Monsoon Subsystems in Mekong River Basin" Atmosphere 14, no. 6: 958. https://doi.org/10.3390/atmos14060958
APA StyleGuo, A., & He, L. (2023). Correlations between Summer Discharge and South Asian Summer Monsoon Subsystems in Mekong River Basin. Atmosphere, 14(6), 958. https://doi.org/10.3390/atmos14060958