Response Time of Vegetation to Drought in Weihe River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Research Method
2.3.1. Pearson Correlation Analysis
2.3.2. Standardized Precipitation Evapotranspiration Index (SPEI)
2.3.3. Standardized Precipitation Index (SPI)
2.3.4. Trend Analysis
3. Results
3.1. Spatial and Temporal Evolution Characteristics of NDVI in the Weihe River Basin
3.1.1. Time Variation Characteristics of NDVI
3.1.2. Spatial Evolution Characteristics of NDVI
3.2. Variation Characteristics of SPEI/SPI at Different Time Scales in the WRB
3.3. RTVD in the WRB
3.4. RTVD over Different Land Use Types
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tollefson, J. IPCC climate report: Earth is warmer than it’s been in 125,000 years. Nature 2021, 596, 171–172. [Google Scholar] [CrossRef]
- Wu, B.; Quan, Q.; Huang, X.; Deng, J. Response of extreme precipitation to climatic warming in the Weihe river basin, China and its mechanism. Open Geosci 2022, 14, 853–862. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Ma, L. Bivariate probabilistic quantification of drought impacts on terrestrial vegetation dynamics in mainland China. J. Hydrol. 2019, 577, 123980. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Begueria, S.; Trigo, R. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Van Hoek, M.; Jia, L.; Zhou, J.; Zheng, C.; Menenti, M. Early drought detection by spectral analysis of satellite time series of precipitation and normalized difference vegetation index (NDVI). Remote Sens. 2016, 8, 422. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, J.; Zhang, L.; Wang, Y.; Li, Y.; Wang, X. NDVI dynamic changes and their relationship with meteorological factors and soil moisture. Environ. Earth Sci. 2018, 77, 582. [Google Scholar] [CrossRef]
- Pang, J.T.; Duang, J.L.; Zhang, R.; Lv, J.C. Characteristics of Spatiotemporal Evolution and Climate Response of Vegetation Cover in the Wei River Basin from 2000 to 2019. J. Soil Water Conserv. 2021, 28, 230–237. [Google Scholar] [CrossRef]
- Wang, L.X.; Yu, D.Y.; Liu, Z.; Zhang, S.C.; Yang, Y. Study on Tempo-spatial Variations of NDVI and Climatic Factors and Their Correlation in the Weihe Watershed. J. Soil Water Conserv. 2019, 26, 249–254. [Google Scholar]
- Zhang, L.Q.; Ren, L.L.; Jiang, S.H.; Liu, S.Y.; Dai, F.J.; Wang, Y.Q. Vegetation Change Characteristics in Weihe River Basin during 1982-2015 and lts Related Climatic Factors. J. China Hydrol. 2018, 38, 66–72. [Google Scholar]
- Zhang, Q.; Kong, D.; Singh, V.P.; Shi, P. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Glob. Planet. Chang. 2017, 152, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Leal Filho, W.; Yin, J.; Hu, R.; Wang, J.; Yang, C.; Yin, S.; Bao, Y.; Ayal, D.Y. Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau. J. Clean Prod. 2018, 179, 210–216. [Google Scholar] [CrossRef]
- Xu, X.C.; Zhao, X.Y.; Song, X.Y. Impacts of the returning farmland to forest (grassland) project on ecosystem services in the Weihe River Basin, China. Chin. J. Appl. Ecol. 2021, 32, 3893–3904. [Google Scholar]
- Wang, S.; Lei, X.H.; Zhang, F. Analysis on variation characteristics of precipitation time series in Weihe River Basin during the past 55 years. Adv. Mater. Res. 2013, 684, 246–252. [Google Scholar] [CrossRef]
- Liu, Y.G.; Bao, J.C.; Yang, Y.X.; Huang, X. Temporal and Spatial Characteristics of Precipitation and Evaporation in the Weihe River Basin from 1850 to 2005. Res. Soil Water Conserv. 2022, 29, 224–232. [Google Scholar]
- Gou, F.Z.; Qiang, W.B.; Cheng, Y.T. Analysis of multi-scale drought characteristics in Wei River Basin based on SPI. J. Xi’an Univ. Technol. 2019, 35, 443–451. [Google Scholar]
- Wang, X.J.; Jiang, R.G.; Xie, J.C.; Zhu, J.W.; Wang, Y.M. Analysis of variation trend and abrupt point of runoff in the mainstream of Weihe River Basin. J. Hydro-Sci. Eng. 2019, 2, 33–40. (In Chinese) [Google Scholar]
- Li, J.; Mo, S.H.; Shen, B.; Si, H.S.; Wang, Y.M. Analysis of drought characteristics of the Weine river basin based on SPEI. J. Xi’an Univ. Technol. 2016, 32, 70–76. (In Chinese) [Google Scholar]
- Chen, D.K.; Ma, C.; Wang, X.B.; Liu, C. Variation of NDVl and its response to climate change in Hoh Xil during the period of 1982–2015. Arid. Zone Res. 2018, 35, 1410–1417. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, B.; Zhang, Y.Z.; Wang, G.Q.; Ma, B.; Jia, Y.Q. Assessment of spring and summer meteorological droughts based on SPEl and SPl in eastern agricultural region of Qinghai province. J. Nat. Resour. 2017, 32, 1029–1042. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 55–94. [Google Scholar] [CrossRef]
- Prajapati, V.K.; Khanna, M.; Singh, M.; Kaur, R.; Sahoo, R.N.; Singh, D.K. Evaluation of time scale of meteorological, hydrological and agricultural drought indices. Nat. Hazards 2021, 109, 89–109. [Google Scholar] [CrossRef]
- Zuo, D.; Hou, W.; Wu, H.; Yan, P.; Zhang, Q. Feasibility of calculating standardized precipitation index with short-term precipitation data in China. Atmosphere 2021, 12, 603. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.Z.; Ren, P.G.; Wang, D.; Zhao, Y.F.; Yang, S.W. Analysis of drought spatial-temporal characteristics based on SPEl in eastern region of Gansu in recent 50 years. Sci. Geogra. Sinica. 2015, 35, 999–1006. [Google Scholar]
- Zhao, A.Z.; Zhang, A.B.; Liu, H.X.; Liu, Y.X.; Wang, H.F.; Wang, D.L. Spatiotemporal variation of vegetation coverage be-fore and after implementation of grain for green project in the Loess Plateau. J. Nat. Resour. 2017, 32, 449–460. [Google Scholar]
- Lv, Z.T.; Li, S.Y.; Peng, Z.M.; Fan, J.L.; Liu, G.J.; Wang, H.F.; Meng, X.Y. Sensitivity of vegetation responses to drought in Mongolia. Geogr. Res. 2021, 40, 3016–3028. [Google Scholar]
- Ding, L.; Maa, R.F.; Guo, X.; Yang, X.; Zhang, Q.; Yang, C. Microplastics in surface waters and sediments of the wei River, in the northwest of China. Sci. Total Environ. 2019, 667, 427–434. [Google Scholar] [CrossRef]
- He, Y.; Fan, G.F.; Zhang, X.W.; Liu, M.; Gao, D.W. Variation of vegetation NDVI and is response to climate change in Zhejiang Province. Acta Ecol. Sinica. 2012, 32, 4352–4362. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, F.; Mu, X.M.; Li, R. Analysis of spatial and temporal variation of vegetation cover in Wei River Basin under background of converting farmland into forest or grassland. Res. Agr. Mod. 2012, 33, 470–474. [Google Scholar]
- Chang, J.; Zhang, H.; Wang, Y.; Zhu, Y. Assessing the impact of climate variability and human activities on streamflow variation. Hydrol. Earth Syst. Sci. 2016, 20, 1547–1560. [Google Scholar] [CrossRef]
- Deng, W.; Song, J.; Sun, H.; Cheng, D.; Zhang, X.; Liu, J.; Kong, F.; Wang, H.; Khan, A.J. Isolating of climate and land surface contribution to basin runoff variability: A case studyfrom the Weihe River basin. China. Ecol. Eng. 2020, 153, 105904. [Google Scholar] [CrossRef]
- Kong, D.D.; Zhang, Q.; Gu, X.H.; Wang, Y.; Li, H.Z. Vegetation responses to drought at different time scales in china. Acta. Ecol. Sinica. 2016, 36, 7908–7918. [Google Scholar]
- Fang, W.; Huang, S.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Wang, L.; Guo, Y. Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China. Remote Sens. Environ. 2019, 232, 111290. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.S.; Zhang, F. Analysis on Spatio-Temporal Variation of Temperature in Weihe River Basin in Recent 55 Years. Chin. J. Agrometeorol. 2013, 34, 512–518. [Google Scholar]
- Qi, X.W.; Miao, C.; Wang, H.S. Detecting Response of Vegetation Photosynthesis to Meteorological Drought Based on Solar-Induced Chlorophyll Fluorescence. Chin. J. Agrometeorol. 2023, 44, 133–143. [Google Scholar]
- Sa, R.L.; Ding, Y.; Hou, X.Y. Impact of climate change and adaptation in northern grassland of China. Chin. J. Grassl. 2018, 40, 109–115. [Google Scholar]
- Chen, F.; Shi, X.L.; Ding, H.; Li, Y.; Shi, M.Q. Differences in response of vegetation NDVI/EVI to SPEl in the upper reaches of Luanhe River. J. Water Resour. Water Eng. 2021, 32, 71–77+86. [Google Scholar]
- Li, Z.; Zhou, T.; Zhao, X.; Huang, K.; Gao, S.; Wu, H.; Luo, H. Assessments of drought impacts on vegetation in China with the optimal time scales of the climatic drought index. Int. J. Env. Res. Pub. He 2015, 12, 7615–7634. [Google Scholar] [CrossRef]
- Guo, W.W.; Huang, S.Z.; Zhao, J.; Li, Z.Y.; Huang, Q.; Deng, M.J. Spatio-temporal dynamics and driving forces of potential evapotranspiration in the Wei River Basin. Trans. CSAE 2021, 37, 81–89. [Google Scholar]
- Yang, J.; Wu, J.; Zhou, H.; Han, X. The impacts of typical drought events on terrestrial vegetation in China. International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2018, 42, 3. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Cao, L.; Feng, R.; Pan, Y. Response of NDVI of natural vegetation to climate changes and drought in China. Land 2021, 10, 966. [Google Scholar] [CrossRef]
- Wei, Z.; Wan, X. Spatial and Temporal Characteristics of NDVI in the Weihe River Basin and Its Correlation with Terrestrial Water Storage. Remote Sens. 2022, 14, 5532. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Liu, R.; Ding, L. Influences of Climate Change and Human Activities on NDVI Changes in China. Remote Sens. 2021, 13, 4326. [Google Scholar] [CrossRef]
- Kang, T.; Li, Z.; Gao, Y. Spatiotemporal Variations of Reference Evapotranspiration and Its Determining Climatic Factors in the Taihang Mountains, China. Water 2021, 13, 3145. [Google Scholar] [CrossRef]
- Li, Z.M.; Zheng, F.L.; Liu, W.Z. Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the Loess Plateau of China. Agr. Forest Meteorol. 2012, 154, 147–155. [Google Scholar] [CrossRef]
- Shi, S.Y.; Wang, F.; Jin, K.; Ding, W.B. Response of vegetation index to meteorological drought over Loess Plateau. J. Arid. Meteorol. 2020, 38, 1–13. [Google Scholar]
- Zou, L.; Yu, J.Y.; Xia, J.; Wang, F.Y. Temporal-spatial variation characteristics of drought in the Weihe River Basin based on SPEI. Arid Land Geogra. 2020, 43, 329–338. [Google Scholar]
SPEI3 | SPEI6 | SPEI12 | SPEI24 | SPI3 | SPI6 | SPI12 | SPI24 | |
---|---|---|---|---|---|---|---|---|
Average correlation coefficient | 0.17 | 0.25 | 0.41 | 0.38 | 0.44 | 0.52 | −0.36 | −0.02 |
area proportion % | 4.47 | 8.98 | 44.23 | 42.31 | 63.57 | 27.11 | 3.37 | 5.95 |
Season | SPEI3 | SPEI6 | SPEI12 | SPEI24 | SPI3 | SPI6 | SPI12 | SPI24 |
---|---|---|---|---|---|---|---|---|
Spring | 40.08 | 6.38 | 26.11 | 27.42 | 64.97 | 24.89 | 3.57 | 6.57 |
Summer | 15.37 | 43.45 | 24.39 | 16.78 | 28.95 | 58.04 | 6.43 | 6.57 |
Autumn | 14.29 | 10.59 | 32.83 | 42.29 | 44.39 | 22.85 | 10.79 | 21.97 |
Winter | 20.76 | 26.41 | 25.95 | 26.88 | 58.38 | 5.05 | 12.33 | 24.24 |
Growing season | 32.63 | 19.97 | 24.71 | 22.69 | 59.91 | 33.41 | 3.32 | 3.36 |
SPEI3 | SPEI6 | SPEI12 | SPEI24 | SPI3 | SPI6 | SPI12 | SPI24 | |
---|---|---|---|---|---|---|---|---|
Cultivated land | 0.07 | 0.26 | 0.43 | 0.38 | 0.50 | 0.49 | −0.34 | −0.09 |
Forestland | 0.27 | 0.32 | 0.18 | 0.38 | 0.33 | 0.58 | −0.42 | 0.07 |
Grassland | 0.21 | 0.35 | 0.52 | 0.47 | 0.52 | 0.60 | −0.23 | 0.40 |
Artificial surface | 0.02 | −0.04 | 0.14 | 0.20 | 0.41 | 0.14 | −0.36 | −0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Wei, S.; Liu, G.; Zhou, X.; Li, Y.; Wu, C.; Xu, F. Response Time of Vegetation to Drought in Weihe River Basin, China. Atmosphere 2023, 14, 938. https://doi.org/10.3390/atmos14060938
Fan J, Wei S, Liu G, Zhou X, Li Y, Wu C, Xu F. Response Time of Vegetation to Drought in Weihe River Basin, China. Atmosphere. 2023; 14(6):938. https://doi.org/10.3390/atmos14060938
Chicago/Turabian StyleFan, Jingjing, Shibo Wei, Guanpeng Liu, Xiong Zhou, Yunyun Li, Chenyu Wu, and Fanfan Xu. 2023. "Response Time of Vegetation to Drought in Weihe River Basin, China" Atmosphere 14, no. 6: 938. https://doi.org/10.3390/atmos14060938
APA StyleFan, J., Wei, S., Liu, G., Zhou, X., Li, Y., Wu, C., & Xu, F. (2023). Response Time of Vegetation to Drought in Weihe River Basin, China. Atmosphere, 14(6), 938. https://doi.org/10.3390/atmos14060938