Dynamics and Determinants of Farmers’ Perceptions about Causes and Impacts of Climate Change on Agriculture in Saudi Arabia: Implications for Adaptation, Mitigation, and Sustainability
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Survey Method and Data Collection
2.3. Data Analysis
2.3.1. Logit Model
2.3.2. Multinomial Logit Model
3. Findings
3.1. Perceived Impacts of Climate Change
3.2. Perceived Causes of Climate Change
3.2.1. Factors Affecting Perceptions of Natural Process as Being a Cause of Climate Change
3.2.2. Factors Affecting Perceptions of Deforestation Being a Cause of Climate Change
3.2.3. Factors Affecting Perceptions of Urbanization as Being a Cause of Climate Change
3.3. Parameter Estimates of the Multinomial Logit Model
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO; UN-Water; World Water Assessment Programme. United Nations World Water Development Report 2020: Water and Climate Change; UN: New York, NY, USA, 2020. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Romm, J. Climate Change: What Everyone Needs to Know; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Reckien, D.; Creutzig, F.; Fernandez, B.; Lwasa, S.; Tovar-Restrepo, M.; McEvoy, D.; Satterthwaite, D. Climate change, equity and the Sustainable Development Goals: An urban perspective. Environ. Urban. 2017, 29, 159–182. [Google Scholar] [CrossRef]
- Bator, A.; Borek, A. Adaptation to Climate Change under Climate Change Treaties. Int. Community Law Rev. 2021, 23, 158–167. [Google Scholar] [CrossRef]
- Stern, N. A Time for Action on Climate Change and a Time for Change in Economics. Econ. J. 2022, 132, 1259–1289. [Google Scholar] [CrossRef]
- DeNicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.; Carpenter, D.O. Climate Change and Water Scarcity: The Case of Saudi Arabia. Ann. Glob. Health 2015, 81, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D. Land degradation: IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019; pp. 345–436. [Google Scholar]
- Hermans, K.; McLeman, R. Climate change, drought, land degradation and migration: Exploring the linkages. Curr. Opin. Environ. Sustain. 2021, 50, 236–244. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global change in streamflow extremes under climate change over the 21st century. Hydrol. Earth Syst. Sci. 2017, 21, 5863–5874. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O. Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Rahimpour, M.R., Farsi, M., Makarem, M.A., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 3–28. [Google Scholar]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland Loss Warms Local Land Surface Temperature in China. Geo. Res. Lett. 2020, 47, e2020GL087648. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Nerini, F.F.; Sovacool, B.; Hughes, N.; Cozzi, L.; Cosgrave, E.; Howells, M.; Tavoni, M.; Tomei, J.; Zerriffi, H.; Milligan, B. Connecting climate action with other Sustainable Development Goals. Nat. Sustain. 2019, 2, 674–680. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Shrestha, R.; Rakhal, B.; Adhikari, T.R.; Ghimire, G.R.; Talchabhadel, R.; Tamang, D.; Kc, R.; Sharma, S. Farmers’ Perception of Climate Change and Its Impacts on Agriculture. Hydrology 2022, 9, 212. [Google Scholar] [CrossRef]
- Sillmann, J.; Roeckner, E. Indices for extreme events in projections of anthropogenic climate change. Clim. Chang. 2008, 86, 83–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shi, K.; Yao, X. Research development, current hotspots, and future directions of water research based on MODIS images: A critical review with a bibliometric analysis. Environ. Sci. Pollut. Res. 2017, 24, 15226–15239. [Google Scholar] [CrossRef]
- Das, U.; Ansari, M.A. The nexus of climate change, sustainable agriculture and farm livelihood: Contextualizing climate smart agriculture. Clim. Res. 2021, 84, 23–40. [Google Scholar] [CrossRef]
- Karavolias, N.G.; Horner, W.; Abugu, M.N.; Evanega, S.N. Application of gene editing for climate change in agriculture. Front. Sustain. Food Syst. 2021, 5, 685801. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Haile, M.G.; Wossen, T.; Tesfaye, K.; von Braun, J. Impact of Climate Change, Weather Extremes, and Price Risk on Global Food Supply. Econ. Disasters Clim. Chang. 2017, 1, 55–75. [Google Scholar] [CrossRef]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. Res. 2021, 28, 14211–14232. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S. Climate Change, Soil Erosion Risks, and Nutritional Security. In Climate Change and Resilient Food Systems: Issues, Challenges, and Way Forward; Hebsale Mallappa, V.K., Shirur, M., Eds.; Springer: Singapore, 2021; pp. 219–244. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Fuglie, K. Climate change upsets agriculture. Nat. Clim. Chang. 2021, 11, 294–295. [Google Scholar] [CrossRef]
- FAO; Weltbankgruppe. Water Management in Fragile Systems: Building Resilience to Shocks and Protracted Crises in the Middle East and North Africa; FAO: Rome, Italy; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- WHO. COP24 Special Report: Health and Climate Change; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjanson, P.; et al. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Mishra, A.; Bruno, E.; Zilberman, D. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci. Total Environ. 2021, 754, 142210. [Google Scholar] [CrossRef]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Gosling, S.N.; Dunn, R.; Carrol, F.; Christidis, N.; Fullwood, J.; Gusmao, D.d.; Golding, N.; Good, L.; Hall, T.; Kendon, L. Climate: Observations, Projections and Impacts; Met Office: Exeter Devon, UK, 2011.
- Faisal, M.; Chunping, X.; Abbas, A.; Raza, M.H.; Akhtar, S.; Ajmal, M.A.; Ali, A. Do risk perceptions and constraints influence the adoption of climate change practices among small livestock herders in Punjab, Pakistan? Environ. Sci. Pollut. Res. 2021, 28, 43777–43791. [Google Scholar] [CrossRef]
- Al Zawad, F.M.; Aksakal, A. Impacts of Climate Change on Water Resources in Saudi Arabia. In Global Warming: Engineering Solutions; Dincer, I., Hepbasli, A., Midilli, A., Karakoc, T.H., Eds.; Springer: Boston, MA, USA, 2010; pp. 511–523. [Google Scholar]
- Almazroui, M.; Islam, M.N.; Balkhair, K.S.; Şen, Z.; Masood, A. Rainwater harvesting possibility under climate change: A basin-scale case study over western province of Saudi Arabia. Atmos. Res. 2017, 189, 11–23. [Google Scholar] [CrossRef]
- Relief Web. Aqueduct Projected Water Stress Country Rankings. OCHA, New York, USA, 2015. Available online: https://www.wri.org/insights/ranking-worlds-most-water-stressed-countries-2040 (accessed on 15 March 2023).
- Samad, N.; Bruno, V. The urgency of preserving water resources. Environ. News 2013, 21, 3–6. [Google Scholar]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Chang. 2011, 104, 599–627. [Google Scholar] [CrossRef]
- Haque, M.I.; Khan, M.R. Impact of climate change on food security in Saudi Arabia: A roadmap to agriculture-water sustainability. J. Agribus. Dev. Emerg. Econ. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Odnoletkova, N.; Patzek, T.W. Data-Driven Analysis of Climate Change in Saudi Arabia: Trends in Temperature Extremes and Human Comfort Indicators. J. Appl. Meteorol. Climatol. 2021, 60, 1055–1070. [Google Scholar] [CrossRef]
- Williams, J.B.; Shobrak, M.; Wilms, T.M.; Arif, I.A.; Khan, H.A. Climate change and animals in Saudi Arabia. Saudi J. Biol. Sci. 2012, 19, 121–130. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Implications of Climate Change on Water Resources in Saudi Arabia. Arab. J. Sci. Eng. 2013, 38, 1959–1971. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Shabani, F. Climate change impacts on date palm cultivation in Saudi Arabia. J. Agric. Sci. 2017, 155, 1203–1218. [Google Scholar] [CrossRef]
- Zatari, T. Second National Communication: Kingdom of Saudi Arabia; UN: New York, NY, USA, 2011. [Google Scholar]
- Tarawneh, Q.Y.; Chowdhury, S. Trends of Climate Change in Saudi Arabia: Implications on Water Resources. Climate 2018, 6, 8. [Google Scholar] [CrossRef]
- MEWA. National Environmental Strategy: Executive Summary for the Council of Economic and Development Affairs; MEWA: Dammam, Saudi Arabia, 2017. [Google Scholar]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M. Climate Change: Impact on Agriculture and Costs of Adaptation; International Food Policy Research Institute: Washington, DC, USA, 2009; Volume 21. [Google Scholar]
- Al-Sarihi, A. Prospects for Climate Change Integration into GCC Economic Diversification Strategies; LSE Middle East Centre, Kuwait Programme: London, UK, 2018. [Google Scholar]
- Alotaibi, B.A.; Abbas, A.; Ullah, R.; Nayak, R.K.; Azeem, M.I.; Kassem, H.S. Climate Change Concerns of Saudi Arabian Farmers: The Drivers and Their Role in Perceived Capacity Building Needs for Adaptation. Sustainability 2021, 13, 12677. [Google Scholar] [CrossRef]
- Manandhar, S.; Pratoomchai, W.; Ono, K.; Kazama, S.; Komori, D. Local people’s perceptions of climate change and related hazards in mountainous areas of northern Thailand. Int. J. Disaster Risk Reduct. 2015, 11, 47–59. [Google Scholar] [CrossRef]
- Ono, K.; Kazama, S.; Kawagoe, S. Analysis of the risk distribution of slope failure in Thailand by the use of GIS data. In Environmental hydraulics; CRC Press: Boca Raton, FL, USA, 2010; pp. 1189–1194. [Google Scholar]
- Laidler, G.J. Inuit and scientific perspectives on the relationship between sea ice and climate change: The ideal complement? Clim. Chang. 2006, 78, 407. [Google Scholar] [CrossRef]
- Danielsen, F.; Burgess, N.D.; Balmford, A. Monitoring matters: Examining the potential of locally-based approaches. Biodivers. Conserv. 2005, 14, 2507–2542. [Google Scholar] [CrossRef]
- Azeem, M.I.; Alhafi Alotaibi, B. Farmers’ beliefs and concerns about climate change, and their adaptation behavior to combat climate change in Saudi Arabia. PLoS ONE 2023, 18, e0280838. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Kassem, H.S.; Nayak, R.K.; Muddassir, M. Farmers’ Beliefs and Concerns about Climate Change: An Assessment from Southern Saudi Arabia. Agriculture 2020, 10, 253. [Google Scholar] [CrossRef]
- Jägerskog, A.; Barghouti, S. Advancing Knowledge of the Water-Energy Nexus in the GCC Countries; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Khomsi, S.; Roure, F.; Al Garni, M.; Amin, A. Arabian Plate and Surroundings: Geology, Sedimentary Basins and Georesources; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- GASTAT. Agricultural Production Survey Bulletin; GASTAT: Riyadh, Saudi Arabia, 2019.
- Sharaf, M.A.M. Major elements hydrochemistry and groundwater quality of Wadi Fatimah, West Central Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2013, 6, 2633–2653. [Google Scholar] [CrossRef]
- Khan, S.; Alghafari, Y. Temperature and Precipitation Fluctuation of Madinah-Al-Munawara, Kingdom of Saudi Arabia (1959–2011). Atmos. Clim. Sci. 2016, 6, 402. [Google Scholar] [CrossRef]
- Velandia, M.; Rejesus, R.M.; Knight, T.O.; Sherrick, B.J. Factors Affecting Farmers’ Utilization of Agricultural Risk Management Tools: The Case of Crop Insurance, Forward Contracting, and Spreading Sales. J. Agric. Appl. Econ. 2009, 41, 107–123. [Google Scholar] [CrossRef]
- Alkolibi, F.M. Possible effects of global warming on agriculture and water resources in Saudi Arabia: Impacts and responses. Clim. Chang. 2002, 54, 225–245. [Google Scholar] [CrossRef]
- Alam, J.B.; Hussein, M.H.; Magram, S.F.; Barua, R. Impact of climate parameters on agriculture in Saudi Arabia: Case study of selected crops. Int. J. Clim. Chang. 2011, 2, 41–50. [Google Scholar] [CrossRef]
- Frank, E.; Eakin, H.; López-Carr, D. Social identity, perception and motivation in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Glob. Environ. Chang. 2011, 21, 66–76. [Google Scholar] [CrossRef]
- Ahmed, Z.; Guha, G.S.; Shew, A.M.; Alam, G.M.M. Climate change risk perceptions and agricultural adaptation strategies in vulnerable riverine char islands of Bangladesh. Land Use Policy 2021, 103, 105295. [Google Scholar] [CrossRef]
- Maurya, R.K. Alternate Dairy Management Practices in Drought Prone Areas of Bundelkhand Region of UP; IVRI Izatnagar: Bareilly, India, 2010. [Google Scholar]
- Iqbal, M.A.; Abbas, A.; Naqvi, S.A.; Rizwan, M.; Samie, A.; Ahmed, U.I. Drivers of Farm Households’ Perceived Risk Sources and Factors Affecting Uptake of Mitigation Strategies in Punjab Pakistan: Implications for Sustainable Agriculture. Sustainability 2020, 12, 9895. [Google Scholar] [CrossRef]
- Malka, A.; Krosnick, J.A.; Langer, G. The Association of Knowledge with Concern About Global Warming: Trusted Information Sources Shape Public Thinking. Risk Anal. 2009, 29, 633–647. [Google Scholar] [CrossRef]
- Van der Linden, S.L.; Leiserowitz, A.A.; Feinberg, G.D.; Maibach, E.W. The scientific consensus on climate change as a gateway belief: Experimental evidence. PLoS ONE 2015, 10, e0118489. [Google Scholar] [CrossRef]
- Adger, W.N.; Huq, S.; Brown, K.; Conway, D.; Hulme, M. Adaptation to climate change in the developing world. Prog. Dev. Stud. 2003, 3, 179–195. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Rahut, D.B.; Krupnik, T.J.; Shahrin, S.; Jat, M.L.; Stirling, C.M. Major Climate risks and Adaptation Strategies of Smallholder Farmers in Coastal Bangladesh. Environ. Manag. 2020, 66, 105–120. [Google Scholar] [CrossRef]
- Hornsey, M.J.; Harris, E.A.; Bain, P.G.; Fielding, K.S. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Chang. 2016, 6, 622–626. [Google Scholar] [CrossRef]
- Slimak, M.W.; Dietz, T. Personal Values, Beliefs, and Ecological Risk Perception. Risk Anal. 2006, 26, 1689–1705. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.S.; Aldrich, D.P. Social capital’s role in recovery: Evidence from communities affected by the 2010 Pakistan floods. Disasters 2018, 42, 475–497. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Hellin, J.; Rosenstock, T.; Fisher, E.; Cairns, J.; Stirling, C.; Lamanna, C.; van Etten, J.; Rose, A.; Campbell, B. Climate risk management and rural poverty reduction. Agric. Syst. 2019, 172, 28–46. [Google Scholar] [CrossRef]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Milfont, T.L. The Interplay Between Knowledge, Perceived Efficacy, and Concern About Global Warming and Climate Change: A One-Year Longitudinal Study. Risk Anal. 2012, 32, 1003–1020. [Google Scholar] [CrossRef]
- Smith, N.; Leiserowitz, A. The Rise of Global Warming Skepticism: Exploring Affective Image Associations in the United States Over Time. Risk Anal. 2012, 32, 1021–1032. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Morton, L.W.; Hobbs, J. Farmer beliefs and concerns about climate change and attitudes toward adaptation and mitigation: Evidence from Iowa. Clim. Chang. 2013, 118, 551–563. [Google Scholar] [CrossRef]
- Metag, J.; Füchslin, T.; Schäfer, M.S. Global warming’s five Germanys: A typology of Germans’ views on climate change and patterns of media use and information. Public Underst. Sci. 2015, 26, 434–451. [Google Scholar] [CrossRef]
- Capstick, S.; Whitmarsh, L.; Poortinga, W.; Pidgeon, N.; Upham, P. International trends in public perceptions of climate change over the past quarter century. WIREs Clim. Chang. 2015, 6, 35–61. [Google Scholar] [CrossRef]
- Abbas, A.; Amjath-Babu, T.S.; Kächele, H.; Müller, K. Participatory adaptation to climate extremes: An assessment of households’ willingness to contribute labor for flood risk mitigation in Pakistan. J. Water Clim. Chang. 2016, 7, 621–636. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Chekima, B.; Chekima, S.; Syed Khalid Wafa, S.A.W.; Igau, O.A.; Sondoh, S.L. Sustainable consumption: The effects of knowledge, cultural values, environmental advertising, and demographics. Int. J. Sustain. Dev. World Ecol. 2016, 23, 210–220. [Google Scholar] [CrossRef]
- Ding, N.; Liu, J.; Kong, Z.; Yan, L.; Yang, J. Life cycle greenhouse gas emissions of Chinese urban household consumption based on process life cycle assessment: Exploring the critical influencing factors. J. Clean. Prod. 2019, 210, 898–906. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.H.; Ahmad, I.; Wang, D.; Fahd, S.; Afzal, M.; Ghaffar, A.; Saddique, Q.; Khan, M.A.; Saud, S.; Hassan, S.; et al. Influence of semi-arid environment on radiation use efficiency and other growth attributes of lentil crop. Environ. Sci. Pollut. Res. 2021, 28, 13697–13711. [Google Scholar] [CrossRef]
- Hussain, S.; Habib-Ur-Rehman, M.; Khanam, T.; Sheer, A.; Kebin, Z.; Jianjun, Y. Health Risk Assessment of Different Heavy Metals Dissolved in Drinking Water. Int. J. Environ. Res. Public Health 2019, 16, 1737. [Google Scholar] [CrossRef]
- Raza, A.; Ahrends, H.; Habib-Ur-Rahman, M.; Gaiser, T. Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops. Land 2021, 10, 422. [Google Scholar] [CrossRef]
Variables | Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree | Cumulative Frequency | Ranking |
---|---|---|---|---|---|---|---|
Climate change affecting crop production | 0 | 0 | 2 | 70 | 51 | 541 | 1 |
Drying water sources | 0 | 0 | 3 | 70 | 50 | 539 | 2 |
Temperature is increasing | 0 | 0 | 2 | 70 | 51 | 541 | 1 |
Rainfall pattern changes | 0 | 0 | 11 | 61 | 51 | 532 | 3 |
New crop diseases appeared | 40 | 7 | 34 | 14 | 28 | 352 | 10 |
Climate change increases seasonal flood | 40 | 8 | 46 | 20 | 9 | 319 | 12 |
Climate change cause drought | 0 | 0 | 11 | 64 | 48 | 529 | 4 |
Delay seeding | 0 | 0 | 11 | 81 | 31 | 512 | 6 |
Delay crop maturity | 0 | 0 | 19 | 94 | 10 | 483 | 9 |
Increasing windstorm | 0 | 1 | 15 | 63 | 44 | 519 | 5 |
Risky for human health | 0 | 8 | 12 | 72 | 31 | 495 | 7 |
Risky for animal health | 0 | 8 | 15 | 75 | 25 | 486 | 8 |
Increase in sea level | 11 | 15 | 89 | 2 | 6 | 346 | 11 |
Variables | Climate Change Affecting Crop Production | Temperature Is Increasing | Drying Water Sources | Rainfall Pattern Changes |
---|---|---|---|---|
Coeff. (S.E) | Coeff. (S.E) | Coeff. (S.E) | Coeff. (S.E) | |
Age | 0.029 (0.032) | 0.023 (0.031) | 0.018 (0.030) | 0.028 (0.027) |
Experience | 0.069 (0.044) | 0.091 ** (0.043) | 0.050 (0.041) | 0.033 (0.036) |
Education | −0.403 * (0.238) | −0.669 *** (0.242) | −0.416 * (0.224) | 0.097 (0.204) |
Income | −0.782 *** (0.262) | −0.681 ** (0.263) | −0.616 ** (0.245) | −0.666 *** (0.233) |
Farm Size | 0.070 (0.053) | 0.066 (0.051) | 0.075 (0.056) | 0.090 (0.058) |
Land Ownership | −0.555 (1.474) | 0.043 (1.269) | −0.362 (1.296) | 1.787 * (0.995) |
Loan | 2.695 *** (0.859) | 1.806 ** (0.704) | 2.227 *** (0.733) | 2.411 *** (0.659) |
Soil Fertility | −0.392 (0.275) | −0.544 ** (0.273) | −0.430 * (0.258) | −0.492 ** (0.231) |
Cut 1 | −5.782 (2.525) | −6.599 (2.405) | −5.631 (2.302) | 0.109 (1.874) |
Cut 2 | 1.151 (2.374) | −0.064 (2.190) | 0.314 (2.186) | 4.452 (1.975) |
Log Likelihood | −56.895 | −59.519 | −63.989 | −78.847 |
LR Chi2 (8) | 71.40 *** | 66.15 *** | 63.23 *** | 70.78 *** |
Pseudo R2 | 0.385 | 0.357 | 0.331 | 0.310 |
Variables | Natural Process | Deforestation | Urbanization |
---|---|---|---|
Age | 0.052 (0.037) | −0.030 (0.034) | 0.004 (0.034) |
Farming Experience | −0.088 * (0.046) | −0.005 (0.044) | −0.001 (0.045) |
Education | 1.033 *** (0.229) | 0.722 *** (0.216) | −0.129 (0.228) |
Income | 0.417 * (0.229) | 0.584 ** (0.235) | 0.573 ** (0.255) |
Farm Size | −0.007 (0.023) | −0.004 (0.023) | 0.623 *** (0.194) |
Land Ownership | 2.223 *** (0.722) | 2.502 *** (0.744) | −0.301 (0.788) |
Log Likelihood | −50.471 | −46.559 | −46.918 |
LR chi2(6) | 45.97 *** | 43.54 *** | 38.12 *** |
Pseudo R2 | 0.313 | 0.319 | 0.289 |
Variables | Coefficient | Standard Errors | Significance |
---|---|---|---|
No Cause among the Selected Causes (Base Category) | |||
Natural Process Only (N = 3) | |||
Age | 0.085 | 0.173 | 0.622 |
Farming Experience | 0.047 | 0.246 | 0.847 |
Education | 2.129 | 1.202 | 0.077 * |
Income | 1.561 | 1.396 | 0.263 |
Farm Size | 0.782 | 1.138 | 0.492 |
Land Ownership | −1.550 | 2.681 | 0.563 |
Deforestation Only (N = 5) | |||
Age | 0.056 | 0.126 | 0.658 |
Farming Experience | −0.042 | 0.145 | 0.771 |
Education | 1.511 | 0.881 | 0.08 * |
Income | 1.704 | 1.259 | 0.176 |
Farm Size | 1.726 | 0.899 | 0.055 * |
Land Ownership | −0.865 | 2.338 | 0.711 |
Urbanization Only (N = 10) | |||
Age | −0.043 | 0.117 | 0.713 |
Farming Experience | 0.012 | 0.132 | 0.927 |
Education | 0.494 | 0.808 | 0.541 |
Income | 0.017 | 1.217 | 0.989 |
Farm Size | 2.074 | 0.872 | 0.017 ** |
Land Ownership | −3.734 | 2.129 | 0.080 * |
Natural Process and Deforestation (N = 14) | |||
Age | 0.055 | 0.114 | 0.625 |
Farming Experience | −0.209 | 0.133 | 0.117 |
Education | 2.420 | 0.968 | 0.012 ** |
Income | 1.132 | 1.239 | 0.361 |
Farm Size | 1.321 | 0.902 | 0.143 |
Land Ownership | 1.892 | 5.0546 | 0.98 * |
Natural Process and Urbanization (N = 11) | |||
Age | 0.108 | 0.113 | 0.341 |
Farming Experience | −0.148 | 0.126 | 0.241 |
Education | 1.311 | 0.818 | 0.109 |
Income | 2.007 | 1.219 | 0.100 |
Farm Size | 1.786 | 0.879 | 0.042 * |
Land Ownership | 0.269 | 2.228 | 0.904 |
Deforestation and Urbanization (N = 14) | |||
Age | 0.005 | 0.117 | 0.965 |
Farming Experience | −0.047 | 0.133 | 0.723 |
Education | 1.163 | 0.813 | 0.152 |
Income | 2.089 | 1.222 | 0.087 * |
Farm Size | 1.879 | 0.876 | 0.032 ** |
Land Ownership | −0.509 | 2.185 | 0.816 |
Natural Process, Deforestation and Urbanization (N = 60) | |||
Age | 0.063 | 0.111 | 0.572 |
Farming Experience | −0.128 | 0.125 | 0.309 |
Education | 2.259 | 0.829 | 0.006 *** |
Income | 2.054 | 1.209 | 0.089 * |
Farm Size | 2.027 | 0.871 | 0.020 ** |
Land Ownership | 1.489 | 2.301 | 0.517 |
Log likelihood | −123.126 | ||
LR Chi (Sqr) | 155.44 | ||
Pseudo R2 | 0.387 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, B.A.; Abbas, A.; Ullah, R.; Azeem, M.I.; Samie, A.; Muddassir, M.; Dabiah, A.T.; Raid, M.; Sadaf, T. Dynamics and Determinants of Farmers’ Perceptions about Causes and Impacts of Climate Change on Agriculture in Saudi Arabia: Implications for Adaptation, Mitigation, and Sustainability. Atmosphere 2023, 14, 917. https://doi.org/10.3390/atmos14060917
Alotaibi BA, Abbas A, Ullah R, Azeem MI, Samie A, Muddassir M, Dabiah AT, Raid M, Sadaf T. Dynamics and Determinants of Farmers’ Perceptions about Causes and Impacts of Climate Change on Agriculture in Saudi Arabia: Implications for Adaptation, Mitigation, and Sustainability. Atmosphere. 2023; 14(6):917. https://doi.org/10.3390/atmos14060917
Chicago/Turabian StyleAlotaibi, Bader Alhafi, Azhar Abbas, Raza Ullah, Muhammad Imran Azeem, Abdus Samie, Muhammad Muddassir, Abduaziz Thabet Dabiah, Moodhi Raid, and Tahira Sadaf. 2023. "Dynamics and Determinants of Farmers’ Perceptions about Causes and Impacts of Climate Change on Agriculture in Saudi Arabia: Implications for Adaptation, Mitigation, and Sustainability" Atmosphere 14, no. 6: 917. https://doi.org/10.3390/atmos14060917
APA StyleAlotaibi, B. A., Abbas, A., Ullah, R., Azeem, M. I., Samie, A., Muddassir, M., Dabiah, A. T., Raid, M., & Sadaf, T. (2023). Dynamics and Determinants of Farmers’ Perceptions about Causes and Impacts of Climate Change on Agriculture in Saudi Arabia: Implications for Adaptation, Mitigation, and Sustainability. Atmosphere, 14(6), 917. https://doi.org/10.3390/atmos14060917