A Parametric Model of Elliptic Orbits for Annual Evolutions of Northern Hemisphere Stratospheric Polar Vortex and Their Interannual Variability
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Statistics of the SPV Indices
3.2. The Parametric Elliptic Orbit Model
3.3. Year-to-Year Variations of the Elliptic Orbits for the Annual Evolutions of M and MU
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.G.; Ren, R.C.; Yu, Y.Y.; Xu, H.M. The boreal spring stratospheric final warming and its interannual and interdecadal variability. Sci. China Earth Sci. 2014, 57, 710–718. [Google Scholar] [CrossRef]
- Schoeberl, M.R.; Newman, P.A. Chapter middle atmosphere: Polar vortex. In Encyclopedia of Atmospheric Sciences, 2nd ed.; North, J.G.R., Pyle, F.Z., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume 4, pp. 12–17. [Google Scholar]
- Kelleher, M.E.; Blanca, A.; James, A.S. Interseasonal Connections between the Timing of the Stratospheric Final Warming and Arctic Sea Ice. J. Clim. 2020, 33, 3079–3092. [Google Scholar] [CrossRef]
- Hu, J.G.; Ren, R.C.; Xu, H.M. Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci. 2014, 71, 2319–2334. [Google Scholar] [CrossRef]
- Wei, K.; Wen, C.M.; Huang, R.H. Dynamical diagnosis of the breakup of the stratospheric polar vortex in the Northern Hemisphere. Sci. China-Earth Sci. 2007, 50, 1369–1379. [Google Scholar] [CrossRef]
- Cohen, J.; Salstein, D.; Saito, K. A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophys. Res. Lett. 2002, 29, 51. [Google Scholar] [CrossRef]
- Cai, M.; Ren, R.C. Meridional and Downward Propagation of Atmospheric Circulation Anomalies. Part I: Northern Hemisphere Cold Season Variability. J. Atmos. Sci. 2007, 64, 1880–1901. [Google Scholar] [CrossRef]
- Ren, R.C.; Cai, M. Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Ren, R.C.; Cai, M. Meridional and downward propagation of atmospheric circulation anomalies. Part II: Southern Hemisphere cold season variability. J. Atmos. Sci. 2008, 65, 2343–2359. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, M.; Ren, R.A. Stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode. Clim. Dyn. 2018, 50, 3757–3773. [Google Scholar] [CrossRef]
- Lorenz, D.J.; Hartmann, D.L. Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Clim. 2003, 16, 1212–1227. [Google Scholar] [CrossRef]
- Christiansen, B. Downward propagation and statistical forecast of the near-surface weather. J. Geophys. Res. 2005, 110, D14104. [Google Scholar] [CrossRef]
- Christiansen, B. Is the atmosphere interesting? A projection pursuit study of the circulation in the Northern Hemisphere winter. J. Clim. 2009, 22, 1239–1254. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Limpasuvan, V.; Hartmann, D.L. Wave-maintained annular modes of climate variability. J. Clim. 2000, 13, 4414–4429. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric Harbingers of Anomalous Weather Regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Thompson, D.W.J. A critical comparison of stratosphere–troposphere coupling indices. Q. J. R. Meteorol. Soc. 2009, 135, 1661–1672. [Google Scholar] [CrossRef]
- Cai, M.; Yu, Y.; Deng, Y.; van den Dool, H.M.; Ren, R.; Saha, S.; Wu, X.; Huang, J. Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold-Air Outbreaks 1 Month in Advance. Bull. Am. Meteorol. Soc. 2016, 97, 1475–1489. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. Atmos. 1999, 104, 30937–30946. [Google Scholar] [CrossRef]
- Christiansen, B. Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis. J. Geophys. Res. Atmos. 2001, 106, 27307–27322. [Google Scholar] [CrossRef]
- Thompson, D.W.; Baldwin, M.P.; Wallace, J.M. Stratospheric Connection to Northern Hemisphere Wintertime Weather: Implications for Prediction. J. Clim. 2002, 15, 1421–1428. [Google Scholar] [CrossRef]
- Zhou, S.; Miller, A.J.; Wang, J.; Angell, J.K. Downward-Propagating Temperature Anomalies in the Preconditioned Polar Stratosphere. J. Clim. 2002, 15, 781–792. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett. 2010, 37, L09707. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C.; Anstey, J.A. A blocking view of the stratosphere-troposphere coupling. J. Geophys. Res. Atmos. 2014, 119, 11, 100–111, 115. [Google Scholar] [CrossRef]
- Yu, Y.; Ren, R.; Hu, J.; Wu, G. A mass budget analysis on the interannual variability of the polar surface pressure in the winter season. J. Atmos. Sci. 2014, 71, 3539–3553. [Google Scholar] [CrossRef]
- Deng, S.; Chen, Y.; Luo, T.; Bi, Y.; Zhou, H. The possible influence of stratospheric sudden warming on East Asian weather. Advice Atmos. Sci. 2008, 25, 841–846. [Google Scholar] [CrossRef]
- Kenyon, J.; Hegerl, G.C. Influence of Modes of Climate Variability on Global Temperature Extremes. J. Clim. 2008, 21, 3872–3889. [Google Scholar] [CrossRef]
- Scaife, A.A.; Knight, J.R. Ensemble simulations of the cold European winter of 2005–2006. Q. J. R. Meteorol. 2008, 134, 1647–1659. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Breiteig, T.; Scaife, A.A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. R. Meteorol. Soc. 2010, 136, 886–893. [Google Scholar] [CrossRef]
- Cohen, J.; Jones, J. Tropospheric Precursors and Stratospheric Warmings. J. Clim. 2011, 24, 6562–6572. [Google Scholar] [CrossRef]
- Mitchell, D.M.; Gray, L.J.; Anstey, J.; Baldwin, M.P.; Charlton-Perez, A.J. The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate. J. Clim. 2013, 26, 2668–2682. [Google Scholar] [CrossRef]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Butler, A.H. Stratospheric drivers of extreme events at theEarth’s surface. Commun. Earth Environ. 2020, 1, 59. [Google Scholar] [CrossRef]
- Huang, J.; Hitchcock, P.; Maycock, A.C.; McKenna, C.M.; Tian, W. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Commun. Earth Environ. 2021, 2, 147. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Ren, R.; Cai, M.; Guan, Z.; Huang, W. An isentropic mass circulation view on the extreme cold events in the 2020/21 winter. Adv. Atmos. Sci. 2022, 39, 643–657. [Google Scholar] [CrossRef]
- Zhang, X.D.; Fu, Y.F.; Han, Z.; Overland, J.E.; Rinke, A.; Tang, H.; Vihma, T.; Wang, M.Y. Extreme Cold Events from East Asia to North America in Winter 2020/21: Comparisons, Causes, and Future Implications. Adv. Atmos. Sci. 2022, 39, 553–565. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Si, D.; Ding, Y.H.; Jiang, D.B.; Li, Q.Q.; Wang, G.F. Influence of Major Stratospheric Sudden Warming on the Unprecedented Cold Wave in East Asia in January 2021. Adv. Atmos. Sci. 2022, 39, 576–590. [Google Scholar] [CrossRef]
- Arnone, E.; Castelli, E.; Papandrea, E.; Carlotti, M.; Dinelli, B.M. Extreme ozone depletion in the 2010–2011 Arctic winter strato-sphere as observed by MIPAS/ENVISAT using a 2-Dtomographic approach. Atmos. Chem. Phys. 2012, 12, 9149–9165. [Google Scholar] [CrossRef]
- Chipperfield, M.P.; Jones, R.L. Relative influences of atmospheric chemistry and transport on Arctic ozone trends. Nature 1999, 400, 551–554. [Google Scholar] [CrossRef]
- Daniel, J.S.; Solomon, S.; Portmann, R.W.; Garcia, R.R. Stratospheric ozone destruction: The importance of bromine relative to chlorine. J. Geophys. Res. Atmos. 1999, 104, 23871–23880. [Google Scholar] [CrossRef]
- Solomon, S.; Garcia, R.R.; Ravishankara, A.R. On the role of iodine in ozone depletion. J. Geophys. Res. Atmos. 1994, 99, 20491–20499. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Claud, C.; Keckhut, P.; Mariaccia, A. Stratospheric Final Warmings fall into two categories with different evolution over the course of the year. Commun. Earth Environ. 2022, 3, 4. [Google Scholar] [CrossRef]
- Shen, X.; Xu, G.M.; Hu, J.G. Inter-annual variation of the Northern Hemisphere stratospheric polar vortex breakdown and its impact on the precipitation over the South Asia in May. J. Meteorol. Sci. 2017, 37, 718–726. [Google Scholar]
- Lee, S.H.; Lorenzo, M.P.; Guan, B. Modulation of Atmospheric Rivers by the Arctic Stratospheric Polar Vortex. Geophys. Res. Lett. 2022, 49, e2022GL100381. [Google Scholar] [CrossRef]
- Hardiman, S.C.; Scaife, A.A.; Dunstone, N.J.; Wang, L. Subseasonal vacillations in the winter stratosphere. Geophys. Res. Lett. 2022, 47, e2020GL087766. [Google Scholar] [CrossRef]
- Zuev, V.V.; Savelieva, E. Stratospheric polar vortex dynamics according to the vortex delineation method. J. Earth Syst. Sci. 2023, 132, 39. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Thépaut, J. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Perlwitz, J.; Graf, H.F. Troposphere-stratosphere dynamic coupling under strong and weak polar vortex conditions. Geophys. Res. Lett. 2001, 28, 271–274. [Google Scholar] [CrossRef]
- Perlwitz, J.; Harnik, N. Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Clim. 2003, 16, 3011–3026. [Google Scholar] [CrossRef]
- Perlwitz, J.; Harnik, N. Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Clim. 2004, 17, 4902–4909. [Google Scholar] [CrossRef]
- Butler, A.H.; Thompson, D.W.; Heikes, R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Clim. 2010, 23, 3474–3496. [Google Scholar] [CrossRef]
- Domeisen, D.I.; Sun, L.; Chen, G. The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophys. Res. Lett. 2013, 40, 4933–4937. [Google Scholar] [CrossRef]
- Hitchcock, P.; Simpson, I.R. The downward influence of stratospheric sudden warmings. J. Atmos. Sci. 2014, 71, 3856–3876. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Hitchcock, P.; Peters, D.H.; Schneidereit, A. Redictability of downward propagation of major sudden stratospheric warmings. Q. J. R. Meteorol. Soc. 2017, 143, 1459–1470. [Google Scholar] [CrossRef]
- Rupp, P.; Birner, T. Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles. Weather Clim. Dyn. 2021, 2, 111–128. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, M.; Ren, R.; Rao, J. A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter. Clim. Dyn. 2018, 51, 3125–3143. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, M.; Shi, C.; Ren, R. On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events. Mon. Weather Rev. 2018, 146, 2717–2739. [Google Scholar] [CrossRef]
- Cai, M.; Shin, C.S. A Total Flow Perspective of Atmospheric Mass and Angular Momentum Circulations: Boreal Winter Mean State. J. Atmos. Sci. 2014, 71, 2244–2263. [Google Scholar] [CrossRef]
- Pauluis, O.; Czaja, A.; Korty, R. The Global Atmospheric Circulation on Moist Isentropes. Science 2008, 321, 1075–1078. [Google Scholar] [CrossRef]
- Pauluis, O.; Shaw, T.; Laliberte, F. A Statistical Generalization of the Transformed Eulerian-Mean Circulation for an Arbitrary Vertical Coordinate System. J. Atmos. Sci. 2011, 68, 1766–1783. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, M.; Ren, R.; Dool, H.M. Relationship between warm airmass transport into the upper polar atmosphere and cold air outbreaks in winter. J. Atmos. Sci. 2015, 72, 349–368. [Google Scholar] [CrossRef]
- Gillett, N.P.; Kell, T.D.; Jones, P.D. Regional climate impacts of the southern annular mode. Geophys. Res. Lett. 2006, 33, L23704. [Google Scholar] [CrossRef]
- Lim, E.; Hendon, H.H.; Boschat, G.; Hudson, D.; Thompson, D.W.J.; Dowdy, A.J.; Arblaster, J.M. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 2019, 12, 896–901. [Google Scholar] [CrossRef]
- Wang, L.; Hardiman, S.C.; Bett, P.E.; Comer, R.E.; Kent, C.; Scaife, A.A. What chance of a sudden stratospheric warming in the southern hemisphere? Environ. Res. Lett. 2020, 15, 104038. [Google Scholar] [CrossRef]
- Scaife, A.A.; James, I.N. Response of the stratosphere to interannual variability of tropospheric planetary waves. Q. J. R. Meteorol. Soc. 2020, 126, 275–297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Sun, J.; Secor, M.; Cai, M.; Luo, X. A Parametric Model of Elliptic Orbits for Annual Evolutions of Northern Hemisphere Stratospheric Polar Vortex and Their Interannual Variability. Atmosphere 2023, 14, 870. https://doi.org/10.3390/atmos14050870
Yu Y, Sun J, Secor M, Cai M, Luo X. A Parametric Model of Elliptic Orbits for Annual Evolutions of Northern Hemisphere Stratospheric Polar Vortex and Their Interannual Variability. Atmosphere. 2023; 14(5):870. https://doi.org/10.3390/atmos14050870
Chicago/Turabian StyleYu, Yueyue, Jie Sun, Michael Secor, Ming Cai, and Xinyue Luo. 2023. "A Parametric Model of Elliptic Orbits for Annual Evolutions of Northern Hemisphere Stratospheric Polar Vortex and Their Interannual Variability" Atmosphere 14, no. 5: 870. https://doi.org/10.3390/atmos14050870
APA StyleYu, Y., Sun, J., Secor, M., Cai, M., & Luo, X. (2023). A Parametric Model of Elliptic Orbits for Annual Evolutions of Northern Hemisphere Stratospheric Polar Vortex and Their Interannual Variability. Atmosphere, 14(5), 870. https://doi.org/10.3390/atmos14050870