Modeling and Assessment of PM10 and Atmospheric Metal Pollution in Kayseri Province, Turkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Periods and Location of Six Sampling Points
2.3. Sampling Method
2.4. Chemical Analysis
2.4.1. Pre-Treatment Procedure
2.4.2. ICP-MS Analysis
2.5. PM10 Determination
- A = weighing before sampling (g);
- B = weighing after sampling (g);
- Q = flow rate (m3/h);
- t = sampling period (24 h).
2.6. Inversion Intensity
2.7. AERMOD Model
- Output type (concentration, dry–wet precipitation, etc.), average time option, dispersion coefficient, and terrain options are entered into the model.
- Contaminant type is selected, and pollutant sources are entered into the model. If the calculation is to be made for an urban area, the population value is inserted. Variable emissions, if any, are defined.
- Receptor points are identified by cartesian or polar coordinates.
- Meteorology files compiled by AERMET View or RAMMET View are entered into the model. The time interval to be modeled is selected (Table S4).
- The desired output types are selected.
- After the sources and receptor points are entered into the model, the AERMAP model is run.
- Finally, the air quality model is run.
3. Results and Discussion
3.1. PM10 Concentrations and Inversion Intensity
3.2. PM10 Metal Concentrations
3.3. AERMOD Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMurry, P.H. A review of atmospheric aerosol measurements. Atmos. Environ. 2000, 34, 1959–1999. [Google Scholar] [CrossRef]
- Güngör, A.; Sevindir, H.C. Modeling Sulfur Dioxide (SO2) and Particulate Matter (PM) Concentration in the atmosphere at the Isparta Province by using Multi-Linear Regression. Suleyman Demirel Univ. J. Nat. Appl. Sci. 2013, 17, 95–108. Available online: https://dergipark.org.tr/en/pub/sdufenbed/issue/20800/222054 (accessed on 29 January 2022).
- Sitaras, I.E.; Siskos, P.A. The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case study. Environ. Chem. Lett. 2008, 6, 59–69. [Google Scholar] [CrossRef]
- Sonwani, S.; Saxena, P. Identifying the sources of primary air pollutants and their impact on environmental health: A review. Int. J. Eng. Tech. Res. 2016, 6, 111–130. Available online: https://www.apsi.tech/material/introductory/IdentifyingtheSourcesofPrimaryAirPollutants.pdf (accessed on 15 February 2022).
- Urone, P. The Primary Air Pollutants—Gaseous Their Occurrence, Sources, and Effects. In Air Pollution V1: Air Pollutants, Their Transformation and Transport; Academic Press: New York, NY, USA, 2015; Volume 1, p. 23. [Google Scholar]
- Kunt, F.; Ayturan, Z.C.; Yümün, F.; Karagönen, İ.; Makgün, S.M. Measurement and evaluation of particulate matter and atmospheric heavy metal pollution in Konya Province, Turkey. Environ. Monit. Assess. 2021, 193, 637. [Google Scholar] [CrossRef]
- Du, W.; Wang, J.; Zhuo, S.; Zhong, Q.; Wang, W.; Chen, Y.; Wang, Z.; Mao, K.; Huang, Y.; Shen, G.; et al. Emissions of particulate PAHs from solid fuel combustion in indoor cookstoves. Sci. Total Environ. 2021, 771, 145411. [Google Scholar] [CrossRef]
- Lin, N.; Chen, Y.; Du, W.; Shen, G.; Zhu, X.; Huang, T.; Wang, X.; Cheng, H.; Liu, J.; Xue, C.; et al. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users. Atmos. Environ. 2016, 147, 485–491. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2006; Available online: https://www.worldcat.org/title/atmospheric-chemistry-and-physics-from-air-pollution-to-climate-change/oclc/929985301 (accessed on 20 February 2022).
- WHO. Air Quality Guidelines Global Update 2005; World Health Organization: Geneva, Switzerland, 2005; ISBN 9289021926. [Google Scholar]
- Li, H.; Qian, X.; Wang, Q. Heavy Metals in Atmospheric Particulate Matter: A Comprehensive Understanding Is Needed for Monitoring and Risk Mitigation. Environ. Sci. Technol. 2013, 47, 13210–13211. [Google Scholar] [CrossRef]
- Popoola, L.T.; Adebanjo, S.A.; Adeoye, B.K. Assessment of atmospheric particulate matter and heavy metals: A critical review. Int. J. Environ. Sci. Technol. 2018, 15, 935–948. [Google Scholar] [CrossRef]
- Sivertsen, B. Presenting air quality data. In NILU-F 6/2002, National Training Course on Air Quality Monitoring and Management; Norwegian Institute for Air Research: Kjeller, Norway, 2002. [Google Scholar]
- Chen, L.C.; Lippmann, M. Effects of metals within ambient air particulate matter (PM) on human health. Inhal. Toxicol. 2009, 21, 1–31. [Google Scholar] [CrossRef]
- Shrivastav, R. Atmospheric heavy metal pollution: Development of chronological records and geochemical monitoring. Resonance 2001, 2, 62–68. Available online: https://www.ias.ac.in/article/fulltext/reso/006/04/0062-0068 (accessed on 25 February 2022). [CrossRef]
- Bradl, H.B. Sources and origins of heavy metals. Interface Sci. Technol. 2005, 6, 1–27. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60. [Google Scholar] [CrossRef]
- Cheng, S. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. Res. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- Cimorelli, A.J.; Perry, S.G.; Venkatram, A.; Weil, J.C.; Paine, R.J.; Wilson, R.B.; Brode, R.W. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteorol. 2005, 44, 682–693. [Google Scholar] [CrossRef]
- Gulia, S.; Shrivastava, A.; Nema, A.K.; Khare, M. Assessment of Urban Air Quality around a Heritage Site Using AERMOD: A Case Study of Amritsar City, India. Environ. Model. Assess. 2015, 20, 599–608. [Google Scholar] [CrossRef]
- Dos Santos Cerqueira, J.; de Albuquerque, H.N.; de Assis Salviano de Sousa, F. Atmospheric pollutants: Modelling with Aermod software. Air Qual. Atmos. Health 2019, 12, 21–32. [Google Scholar] [CrossRef]
- Hadlocon, L.; Zhao, L.; Bohrer, G.; Kenny, W.; Garrity, S.; Wang, J.; Wyslouzil, B.; Upadhyay, J. Modeling of particulate matter dispersion from a poultry facility using AERMOD. J. Air Waste Manag. Assoc. 2015, 65, 206–217. [Google Scholar] [CrossRef]
- Michanowicz, D.R.; Shmool, J.L.; Tunno, B.J.; Tripathy, S.; Gillooly, S.; Kinnee, E.; Clougherty, J.E. A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM2.5. Atmos. Environ. 2016, 131, 307–315. [Google Scholar] [CrossRef]
- Barjoee, S.S.; Azimzadeh, H.; Kuchakzadeh, M.; MoslehArani, A.; Sodaiezadeh, H. Dispersion and Health Risk Assessment of PM10 Emitted from the Stacks of a Ceramic and Tile industry in Ardakan, Yazd, Iran, Using the AERMOD Model. Iran. South Med. J. 2019, 22, 317–332. [Google Scholar] [CrossRef]
- Çed ve Çevre İzinlerinden Sorumlu Şube Müdürlüğü. Kayseri İli 2019 Yılı Çevre Durum Raporu; Türkiye Cumhuriyeti Kayseri Valiliği Çevre ve Şehircilik il Müdürlüğü: Kayseri, Turkey, 2020. Available online: https://webdosya.csb.gov.tr/db/ced/icerikler/kayser-_2019_-cdr-20200918174358.pdf (accessed on 20 January 2022).
- Republic of Türkiye Ministry of Agriculture and Forestry. Available online: https://kayseri.tarimorman.gov.tr/Menu/29/Kayseri-Ve-Tarim (accessed on 20 January 2022).
- TUİK. Nüfus Projeksiyonları. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109 (accessed on 20 January 2022).
- Google Earth. Available online: https://www.google.com/maps/place/Kayseri+Osb%2Fmelikgazi%2Fkayseri/@38.6919731,35.3230511,21898m/data=!3m1!1e3!4m5!3m4!1s0x152b05a45ac0b537:0x17c96b076ed7a7f2!8m2!3d38.7132674!4d35.3575974?hl=tr (accessed on 25 December 2021).
- Umwelttechnik, M.C.Z. MCZ—Model LVS1—Low Volume Dust Sampler. Available online: https://www.environmental-expert.com/products/mcz-model-lvs1-low-volume-dust-sampler-66918 (accessed on 25 January 2022).
- EN 14902; Ambient Air Quality–Standard Method for the Measurement of Pb, Cd, As, and Ni in the PM 10 Fraction of Suspended Particulate Matter; Sist: Ljubljana, Slovenia, 2005; Available online: https://standards.iteh.ai/catalog/standards/cen/374ad39c-7a3c-4eb4-9421-5ff2bec3f12e/en-14902-2005 (accessed on 15 January 2023).
- MGM. Kentsel Hava Kirliliği Riski için Enverziyon Tahmini. Available online: https://www.mgm.gov.tr/site/yardim1.aspx?=Enverziyon (accessed on 15 January 2023).
- Lakes Environmental Consultant Inc. AERMOD Processor, Version 9.6.0; Lakes Environmental Software: Waterloo, ON, Canada, 2018. [Google Scholar]
- WHO. WHO global air quality guidelines. In Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; Executive Summary; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Smichowski, P.; Marrero, J.; Gomez, D. Inductively coupled plasma optical emission spectrometric determination of trace element in PM10 airborne particulate matter collected in an industrial area of Argentina. Microchem. J. 2005, 80, 9–17. [Google Scholar] [CrossRef]
- Rodríguez, S.; Querol, X.; Alastuey, A.; Viana, M.-M.; Alarcón, M.; Mantilla, E.; Ruiz, C.R. Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci. Total Environ. 2004, 328, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Manalis, N.; Grivas, G.; Protonotarios, V.; Moutsatsou, A.; Samara, C.; Chaloulakou, A. Toxic metal content of particulate matter (PM10), within the Greater Area of Athens. Chemosphere 2005, 60, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-M.; Lee, J.-H.; Moon, J.-H.; Chung, Y.-S.; Kim, K.-H. Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos. Res. 2010, 96, 53–64. [Google Scholar] [CrossRef]
- Toledo, V.E.; Júnior, P.B.D.A.; Quiterio, S.L.; Arbilla, G.; Moreira, A.; Escaleira, V.; Moreira, J.C. Evaluation of levels, sources and distribution of toxic elements in PM10 in a suburban industrial region, Rio de Janeiro, Brazil. Environ. Monit. Assess. 2007, 139, 49–59. [Google Scholar] [CrossRef]
- Lyamani, H.; Fernández-Gálvez, J.; Pérez-Ramírez, D.; Valenzuela, A.; Antón, M.; Alados, I.; Alados-Arboledas, L. Aerosol properties over two urban sites in South Spain during an extended stagnation episode in winter season. Atmos. Environ. 2012, 62, 424–432. [Google Scholar] [CrossRef]
- Calvo, A.I.; Alves, C.; Castro, A.; Pont, V.; Vicente, A.M.; Fraile, R. Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmos. Res. 2013, 120, 1–28. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef]
- T.C. Official Gazette. Hava Kalitesi Değerlendirme ve Yönetimi Yönetmeliği (Number: 26898). Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=12188&MevzuatTur=7&MevzuatTertip=5 (accessed on 20 January 2022).
- Song, F.; Gao, Y. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmos. Environ. 2011, 45, 6714–6723. [Google Scholar] [CrossRef]
- Handler, M.; Puls, C.; Zbiral, J.; Marr, I.; Puxbaum, H.; Limbeck, A. Size and composition of particulate emissions from motor vehicles in the Kaisermühlen-Tunnel, Vienna. Atmos. Environ. 2008, 42, 2173–2186. [Google Scholar] [CrossRef]
- Qadeer, A.; Saqib, Z.A.; Ajmal, Z.; Xing, C.; Khalil, S.K.; Usman, M.; Huang, Y.; Bashir, S.; Ahmad, Z.; Ahmed, S.; et al. Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration. Sustain. Cities Soc. 2020, 53, 101959. [Google Scholar] [CrossRef]
- Salam, A.; Hossain, T.; Siddique, M.N.A.; Alam, A.M.S. Characteristics of atmospheric trace gases, particulate matter, and heavy metal pollution in Dhaka, Bangladesh. Air Qual. Atmos. Health 2008, 1, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Chuersuwan, N.; Nimrat, S.; Lekphet, S.; Kerdkumrai, T. Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region. Environ. Int. 2008, 34, 671–677. [Google Scholar] [CrossRef]
- Siahpour, G.; Jozi, S.A.; Orak, N.; Fathian, H.; Dashti, S. Estimation of environmental pollutants using the AERMOD model in Shazand thermal power plant, Arak, Iran. Toxin Rev. 2022, 41, 1269–1279. [Google Scholar] [CrossRef]
- Noorpoor, A.; Rahman, H.R. Application of AERMOD to local scale diffusion and dispersion Modelling of air pollutants from cement factory stacks (Case study: Abyek Cement Factory). Pollution 2015, 1, 417–426. Available online: https://journal.ut.ac.ir/article_54667_4075345a58295fa6cf1f34e3810fd929.pdf (accessed on 20 January 2023).
- Mutlu, A. Analysis of Air Pollutants Level in Balikesir Using Advanced Level Air Dispersion (AERMOD) and Long-Term Meteorological Data Processor (AERMET) Models. In Proceedings of the 3rd International Conference on Environmental Science and Technology, Budapest, Hungary, 19–23 October 2017; pp. 159–164. Available online: https://www.icoest.eu/sites/default/files/2017_icoest_proceeding_v3.pdf (accessed on 20 January 2023).
- Hailin, W.; Zhuang, Y.; Ying, W.; Yele, S.U.N.; Hui, Y.U.A.N.; Zhuang, G.; Zhengping, H.A.O. Long-term monitoring and source apportionment of PM2. 5/PM10 in Beijing, China. J. Environ. Sci. 2008, 20, 1323–1327. [Google Scholar] [CrossRef]
Sampling Points | Coordinates | Main Pollution Source Type | Sampling Schedule |
---|---|---|---|
OIZ | X: 38.740437 Y: 35.375453 | Industry | 07.10.2020 to 22.10.2020 28.05.2021 to 11.06.2021 |
Hürriyet | X: 38.714757 Y: 35.470575 | Heating | 07.10.2020 to 22.10.2020 19.11.2020 to 04.12.2020 |
Talas | X: 38.698954 Y: 35.553436 | Heating | 11.11.2020 to 26.11.2020 04.02.2021 to 19.02.2021 |
Kocasinan | X: 38.744597 Y: 35.481918 | Heating | 11.11.2020 to 26.11.2020 04.02.2021 to 19.02.2021 28.05.2021 to 11.06.2021 |
Tramvay | X: 38.720589 Y: 35.481611 | Traffic | 25.02.2021 to 12.03.2021 28.05.2021 to 11.06.2021 |
Cumhuriyet | X: 38.721486 Y: 35.486120 | Traffic | 25.02.2021 to 12.03.2021 |
Sampling Points | Correlation Coefficient (r) | |||
---|---|---|---|---|
Autumn/Winter | Spring | |||
OIZ | 0.72 | Strong | 0.03 | Very weak |
Hürriyet | 0.33 | Weak | ||
Talas | 0.24 | Very weak | ||
Kocasinan | −0.02 | Very weak | 0.10 | Very weak |
Tramvay | 0.49 | Weak | 0.01 | Very weak |
Cumhuriyet | 0.06 | Very weak |
Metals and Metalloids | Autumn/Winter Period Daily Avg. Metal Concentrations | Spring Period Daily Avg. Metal Concentrations | Average | Standard Deviation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(ng/m3) | (ng/m3) | ||||||||||
OIZ | Hürriyet | Kocasinan | Talas | Tramvay | Cumhuriyet | OIZ | Kocasinan | Tramvay | |||
Aluminum (Al) | 1119 | 1020 | 456 | 557 | 773 | 657 | 908 | 741 | 712 | 771 | 213 |
Antimony (Sb) | 4.0 | 9.0 | 7.0 | 6.0 | 8.0 | 5.0 | 3.0 | 2.0 | 4.0 | 5.0 | 2.3 |
Arsenic (As) | 2.0 | 3.0 | 7.0 | 4.0 | 5.0 | 4.0 | 2.0 | 1.0 | 1.0 | 3.0 | 2.0 |
Barium (Ba) | 71 | 83 | 28 | 39 | 52 | 33 | 48 | 21 | 43 | 47 | 20 |
Boron (B) | 19 | 14 | 17 | 24 | 14 | 11 | 13 | 7.0 | 7.0 | 14 | 5.5 |
Cadmium (Cd) | 1.0 | 1.0 | 2.0 | 1.0 | 1.0 | 1.0 | 1.0 | below DL | 1.0 | 1.0 | 0.5 |
Calcium (Ca) | 1678 | 3902 | 1631 | 1502 | below DL | below DL | below DL | below DL | below DL | 968 | 1347 |
Chromium (Cr) | 22 | 10 | 8.0 | 9.0 | 9.0 | 10 | 12 | 8.0 | 10 | 11 | 4.3 |
Cobalt (Co) | 19 | 4.0 | 1.0 | 1.0 | 1.0 | 1.0 | 3.0 | 1.0 | 2.0 | 4.0 | 5.9 |
Copper (Cu) | 21 | 24 | 17 | 23 | 33 | 27 | 27 | 12 | 35 | 25 | 7.3 |
Iron (Fe) | 1134 | 1395 | 634 | 1099 | 1634 | 961 | 1013 | 709 | 1387 | 1107 | 326 |
Lead (Pb) | 55 | 33 | 35 | 26 | 31 | 26 | 37 | 21 | 22 | 32 | 10.4 |
Magnesium (Mg) | 437 | 436 | 226 | 297 | 433 | 308 | 457 | 479 | 447 | 391 | 89.5 |
Mangan (Mn) | 40 | 28 | 16 | 21 | 29 | 21 | 38 | 20 | 26 | 27 | 8.2 |
Molybdenum (Mo) | 1.0 | 2.0 | 1.0 | 2.0 | 2.0 | 1.0 | 1.0 | below DL | 1.0 | 1.0 | 0.7 |
Nickel (Ni) | 12 | 6.0 | 6.0 | 7.0 | 10 | 7.0 | 9.0 | 5.0 | 5.0 | 7.0 | 2.4 |
Potassium (K) | 374 | 432 | 452 | 355 | 435 | 379 | 341 | 224 | 275 | 363 | 75.7 |
Selenium (Se) | below DL | below DL | 1.0 | below DL | below DL | below DL | below DL | below DL | below DL | below DL | 0.3 |
Sodium (Na) | 158 | 275 | 37 | 1169 | below DL | below DL | 475 | 493 | 365 | 368 | 352.2 |
Vanadium (V) | 3.0 | 3.0 | 3.0 | 5.0 | 6.0 | 3.0 | 2.0 | 2.0 | 2.0 | 3.0 | 1.4 |
Zinc (Zn) | 235 | 86 | 80 | 83 | 99 | 91 | 260 | 91 | 132 | 129 | 69.4 |
PM10—Concentration—Source Group: Scenario 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Averaging Period | Rank | PM10 (μg/m3) | X (m) | Y (m) | ZELEV (m) | ZFLAG (m) | ZHILL (m) | Date, Start Hour |
1 h | 1st | 52.00485 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 14 May 2014, 23 |
24 h | 1st | 17.99654 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 28 November 2014, 24 |
1 h | 10th | 49.75697 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 9 September 2014, 1 |
24 h | 10th | 11.91304 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 12 November 2014, 24 |
1 h | 35th | 45.14457 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 13 February2014, 18 |
24 h | 35th | 9.46881 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 11 September 2014, 24 |
1 h | 50th | 43.88258 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 16 October 2014, 1 |
24 h | 50th | 8.87223 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | 3 October 2014, 24 |
Annual | 5.64820 | 705,632.01 | 4,289,223.43 | 1047.70 | 0.00 | 1621.00 | ||
PM10—Concentration—Source Group: Scenario 2 | ||||||||
Averaging Period | Rank | PM10 (μg/m3) | X (m) | Y (m) | ZELEV (m) | ZFLAG (m) | ZHILL (m) | Date, Start Hour |
1 h | 1st | 3.01835 | 696,637.22 | 4,287,078.26 | 1042.30 | 0.00 | 1042.30 | 12 November 2014, 11 |
24 h | 1st | 1.03820 | 696,120.39 | 4,286,890.15 | 1053.50 | 0.00 | 1060.00 | 4 January 2014, 24 |
1 h | 10th | 2.50546 | 696,637.22 | 4,287,078.26 | 1042.30 | 0.00 | 1042.30 | 5 December 2014, 10 |
24 h | 10th | 0.36564 | 697,154.05 | 4,287,266.37 | 1034.40 | 0.00 | 1034.40 | 12 November 2014, 24 |
1 h | 35th | 1.73207 | 696,120.39 | 4,286,890.15 | 1053.50 | 0.00 | 1060.00 | 4 January 2014, 16 |
24 h | 35th | 0.19729 | 696,120.39 | 4,286,890.15 | 1053.50 | 0.00 | 1060.00 | 13 November 2014, 24 |
1 h | 50th | 1.57954 | 696,120.39 | 4,286,890.15 | 1053.50 | 0.00 | 1060.00 | 3 January 2014, 4 |
24 h | 50th | 0.14811 | 697,154.05 | 4,287,266.37 | 1034.40 | 0.00 | 1034.40 | 24 January 2014, 24 |
Annual | 0.05184 | 696,120.39 | 4,286,890.15 | 1053.50 | 0.00 | 1060.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunt, F.; Ayturan, Z.C.; Yümün, F.; Karagönen, İ.; Semerci, M.; Akgün, M. Modeling and Assessment of PM10 and Atmospheric Metal Pollution in Kayseri Province, Turkey. Atmosphere 2023, 14, 356. https://doi.org/10.3390/atmos14020356
Kunt F, Ayturan ZC, Yümün F, Karagönen İ, Semerci M, Akgün M. Modeling and Assessment of PM10 and Atmospheric Metal Pollution in Kayseri Province, Turkey. Atmosphere. 2023; 14(2):356. https://doi.org/10.3390/atmos14020356
Chicago/Turabian StyleKunt, Fatma, Zeynep Cansu Ayturan, Feray Yümün, İlknur Karagönen, Mümin Semerci, and Mehmet Akgün. 2023. "Modeling and Assessment of PM10 and Atmospheric Metal Pollution in Kayseri Province, Turkey" Atmosphere 14, no. 2: 356. https://doi.org/10.3390/atmos14020356
APA StyleKunt, F., Ayturan, Z. C., Yümün, F., Karagönen, İ., Semerci, M., & Akgün, M. (2023). Modeling and Assessment of PM10 and Atmospheric Metal Pollution in Kayseri Province, Turkey. Atmosphere, 14(2), 356. https://doi.org/10.3390/atmos14020356