Tropical Cyclone Detection from the Thermal Infrared Sensor IASI Data Using the Deep Learning Model YOLOv3
Abstract
:1. Introduction
2. Materials and Methods
2.1. IASI Data
2.2. YOLOv3 Model and Validation
- four offsets coordinates , , , (center coordinates x,y of the box, width w, and height h)
- a confidence score reflecting how likely the box contains an object and how accurate is the box
- C values correspond to the class probabilities. In our case, C = 1, as we only have one class (TC).
2.3. Image Processing and Labeling
- cyclone center location (latitude/longitude) at 0, 6, 12, and 18 h UTC
- 34 knots (about 63 km/h) wind radii maximum extent in northeastern, southeastern, southwestern, and northwestern quadrant (in nautical miles), i.e., for each of the directions, the distance until which the wind speed is more than 34 knots is given.
3. Results and Discussion
3.1. Description of Experiments
- Experiment A: First experiment consisted in using only three carefully selected channels from the 50 previously selected (Figure 2) to keep the original architecture of the YOLOv3 model unchanged, the latter expecting input images of three channels.
- Experiment B: Second experiment considered all 50 selected channels and reduced them to three using a specific NN architecture: an autoencoder.
3.2. Experiment A: Three Channels
3.3. Experiment B: Compressing 50 Channels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Selected IASI Wavenumbers
IASI Wavenumber (cm) |
---|
969.75, 965.25, 957.00, 962.75, 958.25, 968.25, 952.25, 935.75, 961.50, 943.25, 939.50, 950.25, 972.50, 916.25, 934.00, 937.75, 930.25, 945.50, 899.25, 930.00, 897.00, 917.00, 923.50, 901.00, 926.25 |
994.50, 996.25, 999.50, 1001.50, 1004.75, 1006.50, 1009.75, 1011.50, 1014.50, 2145.50, 2147.25, 2150.00, 2152.50, 2153.50, 2157.25, 2158.25, 2161.75, 2164.75, 2166.75, 2169.25, 2172.75, 2174.25, 2176.25, 2177.75 |
Appendix B. Definitions
- Intersection over Union (IoU): Also known as the Jaccard index, the IoU is the overlapping area between two boxes, typically between a predicted box and a ground truth, divided by the area of union between them.
- IoU Threshold T: A threshold. In this paper, T = 0.5 or T = 0.1.
- True Positive (TP): A correct prediction, i.e., prediction with IoU ≥ T.
- False Positive (FP): A wrong prediction, i.e., prediction with IoU < T.
- False Negative (FN): A ground truth not detected.
- Precision: The proportion of correct positive predictions. It represents the ability of a model to identify only the relevant objects.
- Recall: The proportion of TPs detected among all relevant ground truths. It represents the ability of the model to find all the ground truth boxes.
Appendix C. Labeling
Appendix D. Dataset Creation
Algorithm A1 Dataset creation procedure |
|
Appendix E. Autoencoder
Type of Layer | Input Shape | Output Shape |
---|---|---|
Convolution | [140, 256, 50] | [140, 256, 32] |
Convolution | [140, 256, 32] | [140, 256, 16] |
Convolution | [140, 256, 16] | [140, 256, 8] |
Convolution | [140, 256, 8] | [140, 256, 3] |
Transposed Convolution | [140, 256, 3] | [140, 256, 8] |
Transposed Convolution | [140, 256, 8] | [140, 256, 16] |
Transposed Convolution | [140, 256, 16] | [140, 256, 32] |
Transposed Convolution | [140, 256, 32] | [140, 256, 50] |
References
- Atlantic Oceanographic and Meteorological Laboratory. What Is a Tropical Cyclone, Tropical Disturbance, Tropical Depression, Tropical Storm, Hurricane, and Typhoon? 2021. Available online: https://www.aoml.noaa.gov/hrd-faq/#what-is-a-hurricane (accessed on 13 November 2022).
- Vitart, F.; Anderson, J.L.; Stern, W.F. Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations. J. Clim. 1997, 10, 745–760. [Google Scholar] [CrossRef]
- Bosler, P.A.; Roesler, E.L.; Taylor, M.A.; Mundt, M.R. Stride Search: A general algorithm for storm detection in high-resolution climate data. Geosci. Model Dev. 2016, 9, 1383–1398. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, P.A.; Zarzycki, C.M. TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev. 2017, 10, 1069–1090. [Google Scholar] [CrossRef] [Green Version]
- Bourdin, S.; Fromang, S.; Dulac, W.; Cattiaux, J.; Chauvin, F. Intercomparison of four tropical cyclones detection algorithms on ERA5. Geosci. Model Dev. 2022, 15, 6759–6786. [Google Scholar] [CrossRef]
- Li, J.; Bao, Q.; Liu, Y.; Wu, G.; Lei, W.; He, B.; Wang, X.; Li, J. Evaluation of FAMIL2 in Simulating the Climatology and Seasonal-to-Interannual Variability of Tropical Cyclone Characteristics. J. Adv. Model. Earth Syst. 2019, 11, 1117–1136. [Google Scholar] [CrossRef]
- Zhao, M.; Held, I.; Lin, S.J.; Vecchi, G. Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM. J. Clim.-J. Clim. 2009, 22, 6653–6678. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bao, Q.; Liu, Y.; Wang, L.; Yang, J.; Wu, G.; Wu, X.; He, B.; Wang, X.; Zhang, X.; et al. Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model. Geosci. Model Dev. 2021, 14, 6113–6133. [Google Scholar] [CrossRef]
- Kumler-Bonfanti, C.; Stewart, J.; Hall, D.; Govett, M. Tropical and Extratropical Cyclone Detection Using Deep Learning. J. Appl. Meteorol. Climatol. 2020, 59, 1971–1985. [Google Scholar] [CrossRef]
- Neumann, C.J. An Alternate to the HURRAN (Hurricane Analog) Tropical Cyclone Forecast System. 1972. Available online: https://repository.library.noaa.gov/view/noaa/3605 (accessed on 13 November 2022).
- Knaff, J.A.; Sampson, C.R.; Musgrave, K.D. Statistical Tropical Cyclone Wind Radii Prediction Using Climatology and Persistence: Updates for the Western North Pacific. Weather. Forecast. 2018, 33, 1093–1098. [Google Scholar] [CrossRef]
- Bessafi, M.; Lasserre-Bigorry, A.; Neumann, C.J.; Pignolet-Tardan, F.; Payet, D.; Lee-Ching-Ken, M. Statistical Prediction of Tropical Cyclone Motion: An Analog–CLIPER Approach. Weather Forecast. 2002, 17, 821–831. [Google Scholar] [CrossRef]
- Shi, M.; He, P.; Shi, Y. Detecting Extratropical Cyclones of the Northern Hemisphere with Single Shot Detector. Remote Sens. 2022, 14, 254. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.; Clerbaux, C.; Coheur, P.F.; et al. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Clarisse, L.; R’honi, Y.; Coheur, P.F.; Hurtmans, D.; Clerbaux, C. Thermal infrared nadir observations of 24 atmospheric gases. Geophys. Res. Lett. 2011, 38, L10802. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.; Ohring, G.; Butler, J.; Cao, C.; Datla, R.; Doelling, D.; Gärtner, V.; Hewison, T.; Iacovazzi, B.; Kim, D.; et al. The Global Space-Based Inter-Calibration System. Bull. Am. Meteorol. Soc. 2011, 92, 467–475. [Google Scholar] [CrossRef]
- Bouillon, M.; Safieddine, S.; Hadji-Lazaro, J.; Whitburn, S.; Clarisse, L.; Doutriaux-Boucher, M.; Coppens, D.; August, T.; Jacquette, E.; Clerbaux, C. Ten-Year Assessment of IASI Radiance and Temperature. Remote Sens. 2020, 12, 2393. [Google Scholar] [CrossRef]
- George, M.; Clerbaux, C.; Hurtmans, D.; Turquety, S.; Coheur, P.F.; Pommier, M.; Hadji-Lazaro, J.; Edwards, D.P.; Worden, H.; Luo, M.; et al. Carbon monoxide distributions from the IASI/METOP mission: Evaluation with other space-borne remote sensors. Atmos. Chem. Phys. 2009, 9, 8317–8330. [Google Scholar] [CrossRef] [Green Version]
- Safieddine, S.; Parracho, A.C.; George, M.; Aires, F.; Pellet, V.; Clarisse, L.; Whitburn, S.; Lezeaux, O.; Thépaut, J.N.; Hersbach, H.; et al. Artificial Neural Networks to Retrieve Land and Sea Skin Temperature from IASI. Remote Sens. 2020, 12, 2777. [Google Scholar] [CrossRef]
- Whitburn, S.; Clarisse, L.; Crapeau, M.; August, T.; Hultberg, T.; Coheur, P.F.; Clerbaux, C. A CO2-free cloud mask from IASI radiances for climate applications. Atmos. Meas. Tech. Discuss. 2022, 2022, 1–22. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zheng, P.; Xu, S.t.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Shakya, S.; Kumar, S.; Goswami, M. Deep Learning Algorithm for Satellite Imaging Based Cyclone Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 827–839. [Google Scholar] [CrossRef]
- Pang, S.; Xie, P.; Xu, D.; Meng, F.; Tao, X.; Li, B.; Li, Y.; Song, T. NDFTC: A New Detection Framework of Tropical Cyclones from Meteorological Satellite Images with Deep Transfer Learning. Remote Sens. 2021, 13, 1860. [Google Scholar] [CrossRef]
- Neubeck, A.; Van Gool, L. Efficient Non-Maximum Suppression. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3, pp. 850–855. [Google Scholar] [CrossRef]
- Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, 10, 279. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Bonfanti, C.; Trailovic, L.; Stewart, J.; Govett, M. Machine Learning: Defining Worldwide Cyclone Labels for Training. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 753–760. [Google Scholar] [CrossRef]
- Jocher, G.; Kwon, Y.; guigarfr; perry0418; Veitch-Michaelis, J.; Ttayu; Suess, D.; Baltacı, F.; Bianconi, G.; IlyaOvodov; et al. ultralytics/yolov3: V9.5.0-YOLOv5 v5.0 Release Compatibility Update for YOLOv3. 2021. Available online: https://zenodo.org/record/4681234#.Y8YWHnZByUk (accessed on 14 June 2021).
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef] [Green Version]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Gardoll, S.; Boucher, O. Classification of tropical cyclone containing images using a convolutional neural network: Performance and sensitivity to the learning dataset. Geosci. Model Dev. 2022, 15, 7051–7073. [Google Scholar] [CrossRef]
- Clerbaux, C.; Crevoisier, C. New Directions: Infrared remote sensing of the troposphere from satellite: Less, but better. Atmos. Environ. 2013, 72, 24–26. [Google Scholar] [CrossRef]
- Crevoisier, C.; Clerbaux, C.; Guidard, V.; Phulpin, T.; Armante, R.; Barret, B.; Camy-Peyret, C.; Chaboureau, J.P.; Coheur, P.F.; Crépeau, L.; et al. Towards IASI-New Generation (IASI-NG): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables. Atmos. Meas. Tech. 2014, 7, 4367–4385. [Google Scholar] [CrossRef]
Period | IASI/Metop |
---|---|
2007/10/01–2013/03/08 | A + interpolation |
2013/03/09–2019/12/31 | A + B |
2020/01/01–2021/12/31 | B + C |
Set | Years |
---|---|
Train (70% of the data) | 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2017, 2021 |
Validation (15% of the data) | 2015, 2020 |
Test (15% of the data) | 2018, 2019 |
Experiment | Pretrained Weights | Flip | [email protected] (%) | [email protected] (%) |
---|---|---|---|---|
No | No | 55.67 | 15.25 | |
A | Yes | No | 73.58 | 29.36 |
Yes | Yes | 76.00 | 33.84 | |
B | Yes | Yes | 78.31 | 31.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, L.; George, M.; Gardoll, S.; Safieddine, S.; Whitburn, S.; Clerbaux, C. Tropical Cyclone Detection from the Thermal Infrared Sensor IASI Data Using the Deep Learning Model YOLOv3. Atmosphere 2023, 14, 215. https://doi.org/10.3390/atmos14020215
Lam L, George M, Gardoll S, Safieddine S, Whitburn S, Clerbaux C. Tropical Cyclone Detection from the Thermal Infrared Sensor IASI Data Using the Deep Learning Model YOLOv3. Atmosphere. 2023; 14(2):215. https://doi.org/10.3390/atmos14020215
Chicago/Turabian StyleLam, Lisa, Maya George, Sébastien Gardoll, Sarah Safieddine, Simon Whitburn, and Cathy Clerbaux. 2023. "Tropical Cyclone Detection from the Thermal Infrared Sensor IASI Data Using the Deep Learning Model YOLOv3" Atmosphere 14, no. 2: 215. https://doi.org/10.3390/atmos14020215
APA StyleLam, L., George, M., Gardoll, S., Safieddine, S., Whitburn, S., & Clerbaux, C. (2023). Tropical Cyclone Detection from the Thermal Infrared Sensor IASI Data Using the Deep Learning Model YOLOv3. Atmosphere, 14(2), 215. https://doi.org/10.3390/atmos14020215