Evaluation of the CAS-ESM2-0 Performance in Simulating the Global Ocean Salinity Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. CAS-ESM2-0
2.2. Observations
3. Results
3.1. Mean State
3.1.1. Spatial Distribution
3.1.2. Zonal Mean
3.2. Seasonal Variation
3.3. Long-Term Linear Trends over the Past Decades
3.4. Salinity Contrast Metrics
3.5. Projection
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Ross, E.; Behringer, D. Changes in temperature, pH, and salinity affect the sheltering responses of Caribbean spiny lobsters to chemosensory cues. Sci. Rep. 2019, 9, 4375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L. A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. 2011, 116, C10025. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.; Senior, C.; Stevens, B.; Ronald, S.; Taylor, K. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, M.; Jin, J.; Fei, K.; Ji, D.; Wu, C.; Zhu, J.; He, J.; Chai, Z.; Xie, J.; et al. Description and Climate Simulation Performance of CAS-ESM Version 2. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002210. [Google Scholar] [CrossRef]
- Gao, X.; Fan, P.; Jin, J.; He, J.; Song, M.; Zhang, H.; Fei, K.; Zhang, M.; Zeng, Q. Evaluation of Sea Ice Simulation of CAS-ESM 2.0 in Historical Experiment. Atmosphere 2022, 13, 1056. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, H.; Dong, X.; Liu, H.; Zhang, M.; Gao, X.; He, J.; Chai, Z.; Zeng, Q.; Zhou, G.; et al. CAS-ESM2.0 Model Datasets for the CMIP6 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP). Adv. Atmos. Sci. 2021, 38, 296–306. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, F.; Jin, J.; Dong, X.; Zhang, H.; Lin, R. Comparison of East Asian Summer Monsoon Simulation between an Atmospheric Model and a Coupled Model: An Example from CAS-ESM. Atmosphere 2022, 13, 998. [Google Scholar] [CrossRef]
- Li, J.; Su, J. Comparison of Indian Ocean warming simulated by CMIP5 and CMIP6 models. Atmos. Ocean. Sci. Lett. 2020, 13, 604–611. [Google Scholar] [CrossRef]
- Tian, B.; Dong, X. The Double-ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean Precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087232. [Google Scholar] [CrossRef] [Green Version]
- Tsujino, H.; Urakawa, L.S.; Griffies, S.M.; Danabasoglu, G.; Adcroft, A.J.; Amaral, A.E.; Arsouze, T.; Bentsen, M.; Bernardello, R.; Böning, C.W.; et al. Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev. 2020, 13, 3643–3708. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Yeager, S.G.; Fox-Kemper, B.; Bozec, A.; Castruccio, F.; Danabasoglu, G.; Horvat, C.; Kim, W.M.; Koldunov, N.; Li, Y.; et al. Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev. 2020, 13, 4595–4637. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Stepaniak, D.P. Indices of El Niño Evolution. J. Clim. 2001, 14, 1697–1701. [Google Scholar] [CrossRef]
- Chen, H.-C.; Jin, F.-F. Simulations of ENSO Phase-Locking in CMIP5 and CMIP6. J. Clim. 2021, 34, 5135–5149. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, N.; Momin, I.M.; Basu, S.; Agarwal, V.K. Simulated Sea Surface Salinity Variability in the Tropical Indian Ocean. J. Clim. 2010, 23, 6542–6554. [Google Scholar] [CrossRef]
- Kido, S.; Tozuka, T.; Han, W. Experimental Assessments on Impacts of Salinity Anomalies on the Positive Indian Ocean Dipole. J. Geophys. Res. Ocean. 2019, 124, 9462–9486. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, B.; Zhang, R.; Hu, Z.; Kumar, A.; Balmaseda, M.A.; Marx, L.; Kinter, J.L. Salinity anomaly as a trigger for ENSO events. Sci. Rep. 2014, 4, 6821. [Google Scholar] [CrossRef] [Green Version]
- Ke-xin, L.; Fei, Z. Effects of a freshening trend on upper-ocean stratification over the central tropical Pacific and their representation by CMIP6 models. Deep Sea Res. Part II Top. Stud. Oceanogr. 2022, 195, 104999. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, R. Interannually varying salinity effects on ENSO in the tropical pacific: A diagnostic analysis from Argo. Ocean Dyn. 2015, 65, 691–705. [Google Scholar] [CrossRef]
- Zhi, H.; Zhang, R.-H.; Lin, P.; Yu, P. Interannual Salinity Variability in the Tropical Pacific in CMIP5 Simulations. Adv. Atmos. Sci. 2019, 36, 378–396. [Google Scholar] [CrossRef]
- Liu, H.; Lin, P.; Yu, Y.; Zhang, X.J.A.M.S. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorol. Sin. 2012, 26, 318–329. [Google Scholar] [CrossRef]
- Hunke, E.C.; Lipscomb, W.H. CICE: The Los Alamos Sea Ice Model User’s Manual, Version 4; LA-CC-06-012; Los Alamos National Laboratory Tech. Rep.: Los Alamos, NM, USA, 2008.
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, M.; Lin, W.; Colle, B.; Liu, P.; Vogelmann, A.M. The WRF nested within the CESM: Simulations of a midlatitude cyclone over the Southern Great Plains. J. Adv. Model. Earth Syst. 2013, 5, 611–622. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Trenberth, K.E.; Gruber, N.; Abraham, J.P.; Fasullo, J.T.; Li, G.; Mann, M.E.; Zhao, X.; Zhu, J. Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle. J. Clim. 2020, 33, 10357–10381. [Google Scholar] [CrossRef]
- Good, S.A.; Martin, M.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.R.; Seidov, D.; Yarosh, E.S.; et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 2012, 39, L10603. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.P.; Levitus, S.; Antonov, J.I.; Locarnini, R.A.; Garcia, H.E. Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett. 2005, 32, 67–106. [Google Scholar] [CrossRef] [Green Version]
- Ishii, M.; Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 2009, 65, 287–299. [Google Scholar] [CrossRef]
- Foster, G.; Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 2011, 6, 044022. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, L.; Pan, Y.; Tan, Z.; Abraham, J.; Zhang, B.; Zhu, J.; Song, J. How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity? Adv. Atmos. Sci. 2022, 39, 1650–1672. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.; Zhang, Y.; Jiang, J.; Zhang, H.; Wu, B.; Cao, H.; Wang, T.; Hao, H.; Zhu, J.; Yuan, L.; et al. Earth System Model: CAS-ESM. Front. Data Comput. 2020, 2, 38–54. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 2010, 23, 4342–4362. [Google Scholar] [CrossRef]
- Rahaman, H.; Srinivasu, U.; Panickal, S.; Durgadoo, J.V.; Griffies, S.M.; Ravichandran, M.; Bozec, A.; Cherchi, A.; Voldoire, A.; Sidorenko, D.; et al. An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Model. 2020, 145, 101503. [Google Scholar] [CrossRef]
- Dwivedi, S.; Mishra, A.K.; Srivastava, A. Upper ocean high resolution regional modeling of the Arabian Sea and Bay of Bengal. Acta Oceanol. Sin. 2019, 38, 32. [Google Scholar] [CrossRef]
- Srivastava, A.; Dwivedi, S.; Mishra, A.K. Investigating the role of air-sea forcing on the variability of hydrography, circulation, and mixed layer depth in the Arabian Sea and Bay of Bengal. Oceanologia 2018, 60, 169–186. [Google Scholar] [CrossRef]
- Curry, R.; Dickson, B.; Yashayaev, I. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 2003, 426, 826. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, L.; Pan, Y.; Abraham, J.; Zhang, B.; Zhu, J.; Song, J. Climatological seasonal variation of the upper ocean salinity. Int. J. Climatol. 2021, 42, 3477–3498. [Google Scholar] [CrossRef]
- Dong, X.; Jin, J.; Liu, H.; Zhang, H.; Zhang, M.; Lin, P.; Zeng, Q.; Zhou, G.; Yu, Y.; Song, M.; et al. CAS-ESM2.0 Model Datasets for the CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1). Adv. Atmos. Sci. 2021, 38, 307–316. [Google Scholar] [CrossRef]
- Eyring, V.; Gillett, N.; Achuta Rao, K.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.; Kosaka, Y.; McGregor; et al. Human Influence on the Climate System: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 1 September 2022).
- Reagan, J.; Seidov, D.; Boyer, T. Water Vapor Transfer and Near-Surface Salinity Contrasts in the North Atlantic Ocean. Sci. Rep. 2018, 8, 8830. [Google Scholar] [CrossRef]
- Sprintall, J.; Siedler, G.; Mercier, H. Chapter 19–Interocean and Interbasin Exchanges. Int. Geophys. 2013, 103, 493–518. [Google Scholar]
- Lovato, T.; Peano, D.; Butenschön, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S.; et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Jan, D.Z.; Nikolaos, S.; Adam, T.B.; Robert, M.; Nurser, A.J.G.; Josey, S.A. Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environ. Res. Lett. 2018, 13, 074036. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Zeng, Q.; Wu, L.; Liu, H.; Zhang, M. Formulation of a new ocean salinity boundary condition and impact on the simulated climate of an oceanic general circulation model. Sci. China Earth Sci. 2017, 60, 491–500. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Liu, J. Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model. Sci. China Earth Sci. 2010, 53, 911–918. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Cheng, L.; Wang, X. Evaluation of the CAS-ESM2-0 Performance in Simulating the Global Ocean Salinity Change. Atmosphere 2023, 14, 107. https://doi.org/10.3390/atmos14010107
Li G, Cheng L, Wang X. Evaluation of the CAS-ESM2-0 Performance in Simulating the Global Ocean Salinity Change. Atmosphere. 2023; 14(1):107. https://doi.org/10.3390/atmos14010107
Chicago/Turabian StyleLi, Guancheng, Lijing Cheng, and Xutao Wang. 2023. "Evaluation of the CAS-ESM2-0 Performance in Simulating the Global Ocean Salinity Change" Atmosphere 14, no. 1: 107. https://doi.org/10.3390/atmos14010107
APA StyleLi, G., Cheng, L., & Wang, X. (2023). Evaluation of the CAS-ESM2-0 Performance in Simulating the Global Ocean Salinity Change. Atmosphere, 14(1), 107. https://doi.org/10.3390/atmos14010107