Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Kriging Interpolation Method
2.3.2. Empirical Orthogonal Function
3. Results
3.1. Temporal Variation of PM2.5 and PM10 Concentrations
3.2. Spatial Distribution
3.2.1. Spatial Patterns of PM2.5 and PM10 Concentrations
3.2.2. Spatial Distribution of PM2.5/PM10 Ratio
3.3. Decomposed EOF Patterns of PM2.5 and PM 10 Concentrations
3.4. Meteorological Conditions Affecting PM2.5 and PM10
3.4.1. Meteorological Factors Influencing PM2.5 and PM10
3.4.2. Influence of Atmospheric Circulation Situations on PM2.5 and PM10
4. Discussion
5. Conclusions
- Analyzed on a monthly scale, the changes in PM2.5 and PM10 concentrations in Beijing over the past six years have behaved similarly. PM2.5 concentrations are high in January–March and December, PM10 concentrations peak in March and both concentrations are at their lowest values for the year in August. The average PM2.5 and PM10 concentrations decrease from 2016 to 2021. Additionally, PM2.5 and PM10 concentrations in Beijing shift spatially “high in the south and low in the north” to less regional convergence. Both concentrations are lower in summer. Regarding PM10, the concentrations are obviously higher in spring than in other seasons. The PM2.5/PM10 ratio is lower in spring in all regions, ranging from 0.3 to 0.6. The ratio is larger in winter, with significant performance in winter 2016 and 2019, with ratios exceeding 0.85 in most regions.
- The first EOF pattern exhibits spatial consistency in the variation of PM2.5 and PM10 concentrations, with higher loading values in the southeast than in the northwest. The second EOF pattern shows a spatially heterogeneous variation, which pattern has the effect of impairing PM2.5 concentrations in the southeast from 2016 to 2018.
- PM2.5 and PM10 concentrations show a stable anti-correlation with wind speed in spring and winter. The spring is also influenced by precipitation, while the particulate matter concentrations are positively correlated with temperature in winter. Southwesterly airflow converges with the westerly wind in spring, and particulate matter diffuses from the south to the north, resulting in higher concentrations in the south than in the north. It is influenced by flatter westerly airflow at 700 hPa geopotential height, which is conducive to the formation of stationary weather. The airflow in the vertical direction is converging and sinking, resulting in the particulate matter not being easily dispersed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.B.; Liang, L.W.; Wang, X.J. Spatio-temporal evolution patterns and influencing factors of PM2.5 in Chinese urban agglomerations. Acta Geogr. Sin. 2015, 70, 1720–1734. [Google Scholar]
- Peng, J.F.; Hu, M.; Guo, S.; Du, Z.F.; Zheng, J.; Shang, D.J.; Zamora, M.L.; Zeng, L.M.; Shao, M.; Wu, Y.S.; et al. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc. Natl. Acad. Sci. USA 2016, 113, 4266–4271. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Khalizov, A.; Levy, M.; Zhang, R.Y. New Directions: Light absorbing aerosols and their atmospheric impacts. Atmos. Environ. 2013, 81, 713–715. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Sun, J.Y.; Wang, Y.Q.; Li, W.J.; Zhang, Q.; Wang, W.G.; Quan, J.N.; Cao, G.L.; Wang, J.Z.; Yang, Y.Q.; et al. Factors contributing to haze and fog in China. Chin. Sci. Bull. 2013, 58, 1178–1187. [Google Scholar]
- Chen, R.J.; Zhao, Z.H.; Kan, H.D. Heavy Smog and Hospital Visits in Beijing, China. Am. J. Respir. Crit. Care Med. 2013, 188, 1170–1171. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.Y.; Jaffe, D.A.; Qiao, X.; Miao, Y.C.; Tang, Y. Prediction of Potentially High PM2.5 Concentrations in Chengdu, China. Aerosol Air Qual. Res. 2020, 20, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.Y.; Zhang, Y.J.; Zheng, H.T.; Wang, Z.F.; Sun, Y.L. Characteristics of spatial distribution and variations of atmospheric fine particles in Beijing in 2015. Acta Sci. Circum. 2017, 37, 2409–2419. [Google Scholar]
- Carmona, J.M.; Gupta, P.; Lozano-Garcia, D.F.; Vanoye, A.Y.; Yepez, F.D.; Mendoza, A. Spatial and Temporal Distribution of PM2.5 Pollution over Northeastern Mexico: Application of MERRA-2 Reanalysis Datasets. Remote Sens. 2020, 12, 2286. [Google Scholar] [CrossRef]
- Colmer, J.; Hardman, I.; Shimshack, J.; Voorheis, J. Disparities in PM2.5 air pollution in the United States. Science 2020, 369, 575–578. [Google Scholar] [CrossRef]
- Qu, C.; Chen, T.T.; Liu, J.; Li, Y.D. Spatio-Temporal Characteristics of PM2.5 and Influence Factors in Typical Cities of China. Res. Environ. Sci. 2019, 32, 1117–1125. [Google Scholar]
- Jiang, Q.; Wang, F.; Zhang, H.D.; Lü, M. Analysis of temporal variation characteristics and meteorological conditions of reactive gas and PM2. 5 in Beijing. China Environ. Sci. 2017, 37, 829–837. [Google Scholar]
- An, Z.S.; Huang, R.J.; Zhang, R.Y.; Tie, X.X.; Li, G.H.; Cao, J.J.; Zhou, W.J.; Shi, Z.G.; Han, Y.M.; Gu, Z.L.; et al. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.Q.; Lyapustin, A.; Sun, L.; Peng, Y.R.; Xue, W.H.; Su, T.N.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Wu, G.X.; Li, Z.Q.; Fu, C.B.; Zhang, X.Y.; Zhang, R.Y.; Zhang, R.H.; Zhou, T.J.; Li, J.P.; Li, J.D.; Zhou, D.G.; et al. Advances in studying interactions between aerosols and monsoon in China. Sci. China Earth. Sci. 2016, 59, 1–16. [Google Scholar] [CrossRef]
- Li, J.D.; Hao, X.; Liao, H.; Wang, Y.H.; Cai, W.J.; Li, K.; Yue, X.; Yang, Y.; Chen, H.S.; Mao, Y.H.; et al. Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nat. Geosci. 2022, 15, 349–355. [Google Scholar] [CrossRef]
- Chen, Q.X.; Huang, C.L.; Yuan, Y.; Tan, H.P. Influence of COVID-19 Event on Air Quality and their Association in Mainland China. Aerosol Air Qual. Res. 2020, 20, 1541–1551. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Huang, T.; Tao, S.; Liu, J.F.; Gao, H.; Luo, J.M.; Huang, Y.F.; Liu, X.R.; Chen, K.J.; et al. Unsupervised PM2.5 anomalies in China induced by the COVID-19 epidemic. Sci. Total Environ. 2021, 795, 148807. [Google Scholar] [CrossRef]
- Xue, W.B.; Shi, X.R.; Yan, G.; Wang, J.N.; Xu, Y.L.; Tang, Q.; Wang, Y.L.; Zheng, Y.X.; Lei, Y. Impacts of meteorology and emission variations on the heavy air pollution episode in North China around the 2020 Spring Festival. Sci. China Earth Sci. 2021, 64, 329–339. [Google Scholar] [CrossRef]
- Sulaymon, I.D.; Zhang, Y.X.; Hopke, P.K.; Hu, J.L.; Zhang, Y.; Li, L.; Mei, X.D.; Gong, K.J.; Shi, Z.H.; Zhao, B.; et al. Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China. Environ. Res. 2021, 198, 111186. [Google Scholar] [CrossRef]
- Liu, C.; Hua, C.; Zhang, H.D.; Zhang, B.H.; Wang, G.; Zhu, W.H.; Xu, R. A severe fog-haze episode in Beijing-Tianjin-Hebei region: Characteristics, sources and impacts of boundary layer structure. Atmos. Pollut. Res. 2019, 10, 1190–1202. [Google Scholar] [CrossRef]
- Liu, Y.L.; Shi, G.M.; Zhan, Y.; Zhou, L.; Yang, F.M. Characteristics of PM2.5 spatial distribution and influencing meteorological conditions in Sichuan Basin, southwestern China. Atmos. Environ. 2021, 253, 118364. [Google Scholar] [CrossRef]
- Yao, Q.; Cai, Z.Y.; Liu, J.L.; Wang, X.J.; Hao, T.Y.; Han, S.Q. Effects of meteorological conditions on PM2.5 concentration in Tianjin from 2009 to 2018. Acta Sci. Circumst. 2020, 40, 65–75. [Google Scholar]
- Huang, X.G.; Shao, T.J.; Zhao, J.B.; Cao, J.J.; Sun, L.L. Influence factors and spillover effect of PM2.5 concentration on Fen-wei Plain. China Environ. Sci. 2019, 39, 3539–3548. [Google Scholar]
- Gopalakrishnan, V.; Hirabayashi, S.; Ziv, G.; Bakshi, B.R. Air quality and human health impacts of grasslands and shrublands in the United States. Atmos. Environ. 2018, 182, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.J.; Zhao, P.S.; Xu, J.; Meng, W.; Pu, W.W.; Dong, F.; He, D.; Shi, Q.F. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013, 13, 5685–5696. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ding, A.J.; Gao, J.; Zheng, B.; Zhou, D.R.; Qi, X.M.; Tang, R.; Wang, J.P.; Ren, C.H.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Nat. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef]
- Sun, Z.B.; Zhao, X.J.; Li, Z.M.; Tang, G.Q.; Miao, S.G. Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area. Atmos. Chem. Phys. 2021, 21, 8863–8882. [Google Scholar] [CrossRef]
- Miao, Y.C.; Liu, S.H.; Huang, S.X. Synoptic pattern and planetary boundary layer structure associated with aerosol pollution during winter in Beijing, China. Sci. Total Environ. 2019, 682, 464–474. [Google Scholar] [CrossRef]
- Wu, P.; Ding, Y.H.; Liu, Y.J. Atmospheric circulation and dynamic mechanism for persistent haze events in the Beijing-Tianjin-Hebei region. Adv. Atmos. Sci. 2017, 34, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.S.; Li, Y.T.; Chen, T.; Zhang, D.W.; Sun, F.; Pan, L.B. Spatial-temporal characteristics of PM2.5 in Beijing in 2013. Acta Geogr. Sin. 2015, 70, 110–120. [Google Scholar]
- Zhou, X.; Zhang, T.J.; Li, Z.Q.; Tao, Y.; Wang, F.T.; Zhang, X.; Xu, C.H.; Ma, S.; Huang, J. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013–2016. Environ. Sci. Pollut. Res. 2018, 25, 15174–15190. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J.; Giorgi, F.; Chen, D.L. Changes of effective temperature and cold/hot days in late decades over China based on a high-resolution gridded observation dataset. Int. J. Climatol. 2017, 37, 788–800. [Google Scholar] [CrossRef]
- Xu, X.H.; Zhang, T.C. Spatial-temporal variability of PM2.5 air quality in Beijing, China during 2013–2018. J. Environ. Manag. 2020, 262, 110263. [Google Scholar] [CrossRef]
- Xu, X.D.; Zhou, X.J.; Shi, X.H. Spatial structure and scale feature of the atmospheric pollution source impact of city agglomeration. Sci. China (Ser. D) 2005, 35, 1–24. [Google Scholar]
- An, X.X.; Cao, Y.; Wang, Q.; Fu, J.M.; Wang, C.J.; Jing, K.; Liu, B.X. Chemical Characteristics and Source Apportionment of PM2. 5 in Urban Area of Beijing. Chin. J. Environ. Sci. 2022, 43, 2251–2261. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Yu, C.X.; Deng, X.L.; Shi, C.E.; Wu, B.W.; Zhai, J.; Yang, G.Y.; Huo, Y.F. The scavenging effect of precipitation and wind on PM2.5 and PM10. Acta Sci. Circum. 2018, 38, 4620–4629. [Google Scholar]
- Li, K.F.; Zhang, H.D.; Xie, Y.H. Analysis on precipitation scavenging on PM10 and PM2.5 in central and south of Beijing-Tianjin-Hebei region. J. Arid Land Resour. Environ. 2019, 33, 69–74. [Google Scholar]
- Wang, C.; An, X.Q.; Zhang, P.Q.; Sun, Z.B.; Cui, M.; Ma, L. Comparing the impact of strong and weak East Asian winter monsoon on PM2.5 concentration in Beijing. Atmos. Res. 2019, 215, 165–177. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, H.H.; Jiang, Y.J.; Chen, F.; Cui, X.D.; He, J.; Liu, D.T. A modeling study of PM2.5 transboundary transport during a winter severe haze episode in southern Yangtze River Delta, China. Atmos. Res. 2021, 248, 105159. [Google Scholar] [CrossRef]
- Yang, W.T.; Yao, S.Q.; Deng, M.; Wang, Y.J. Spatio-temporal Distribution Characteristics of PM2.5 and Spatio-temporal Variation Characteristics of the Relationship Between PM2.5 and PM10 in Beijing. Chin. J. Environ. Sci. 2018, 39, 684–690. [Google Scholar]
- Wang, G.C.; Wang, D.Q.; Chen, Z.L. Characteristics and transportation pathways and potential sources of a severe PM2.5 episodes during winter in Beijing. China Environ. Sci. 2016, 36, 1931–1937. [Google Scholar]
- Cai, W.J.; Li, K.; Liao, H.; Wang, H.J.; Wu, L.X. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Chang. 2017, 7, 257–262. [Google Scholar] [CrossRef]
- Guo, D.P.; Wang, R.; Zhao, P. Spatial distribution and source contributions of PM2.5 concentrations in Jincheng, China. Atmos. Pollut. Res. 2020, 11, 1281–1289. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, Y.H.; Chen, C. Pollution: Build on success in China. Nature 2015, 517, 145. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Gao, Q.X.; Liu, J.R.; Li, L.; Gao, W.K.; Su, B.D. Comparative Analysis on the Improvement of Air Quality in Beijing During APEC. China Environ. Sci. 2015, 36, 4340–4347. [Google Scholar] [CrossRef]
- Nie, T.; Li, X.; Wang, Z.S.; Qi, J.; Zhou, Z. Spatial and temporal distribution and process analysis of PM2.5 pollution over Beijing during APEC. China Environ. Sci. 2016, 36, 349–355. [Google Scholar]
- Mo, Y.Z.; Booker, D.; Zhao, S.Z.; Tang, J.; Jiang, H.X.; Shen, J.; Chen, D.H.; Li, J.; Jones, K.C.; Zhang, G. The application of land use regression model to investigate spatiotemporal variations of PM2.5 in Guangzhou, China: Implications for the public health benefits of PM2.5 reduction. Sci. Total Environ. 2021, 778, 146305. [Google Scholar] [CrossRef]
- Cui, Y.; Cao, W.; Ji, D.S.; Gao, W.K.; Wang, Y.S. Estimated contribution of vehicular emissions to carbonaceous aerosols in urban Beijing, China. Atmos. Res. 2021, 248, 105153. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, X.D.; Ding, Y.H.; Liu, Y.J.; Zhang, H.X.; Wang, Y.Q.; Zhong, J.T. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China. Sci. China Earth Sci. 2019, 62, 1885–1902. [Google Scholar] [CrossRef]
- Yin, X.M.; Li, Z.M.; Qiao, L.; Liu, X.X.; Guo, H.; Wu, J.; Zhu, X.W.; Qiu, Y.L.; Wang, J.K.; Zhang, X.Y. Effect analysis of meteorological conditions on air quality during the winter COVID-19 lockdown in Beijing. China Environ. Sci. 2021, 41, 1985–1994. [Google Scholar]
- Pandey, M.; George, M.P.; Gupta, R.K.; Gusain, D.; Dwivedi, A. Impact of COVID-19 induced lockdown and unlock down phases on the ambient air quality of Delhi, capital city of India. Urban Clim. 2021, 39, 100945. [Google Scholar] [CrossRef]
- Adam, M.G.; Tran, P.T.M.; Balasubramanian, R. Air quality changes in cities during the COVID-19 lockdown: A critical review. Atmos. Res. 2021, 264, 105823. [Google Scholar] [CrossRef]
PM2.5 | PM10 | |||||||
---|---|---|---|---|---|---|---|---|
T | WS | PRE | RH | T | WS | PRE | RH | |
spring | 0.063 | −0.694 ** | −0.622 ** | −0.006 | −0.099 | −0.453 ** | −0.518 ** | 0.222 ** |
summer | 0.343 ** | −0.316 ** | −0.245 ** | −0.208 ** | 0.429 ** | −0.234 ** | −0.209 ** | −0.286 ** |
autumn | 0.086 | −0.418 ** | −0.113 | 0.249 ** | 0.256 ** | −0.398 ** | −0.198 ** | 0.088 |
winter | 0.662 ** | −0.479 ** | −0.093 | 0.442 ** | 0.524 ** | −0.486 ** | −0.386 ** | 0.104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Q.; Sun, M. Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing. Atmosphere 2022, 13, 1120. https://doi.org/10.3390/atmos13071120
Xing Q, Sun M. Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing. Atmosphere. 2022; 13(7):1120. https://doi.org/10.3390/atmos13071120
Chicago/Turabian StyleXing, Qiaofeng, and Meiping Sun. 2022. "Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing" Atmosphere 13, no. 7: 1120. https://doi.org/10.3390/atmos13071120
APA StyleXing, Q., & Sun, M. (2022). Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing. Atmosphere, 13(7), 1120. https://doi.org/10.3390/atmos13071120