Evaluation of TROPOMI and OMI Tropospheric NO2 Products Using Measurements from MAX-DOAS and State-Controlled Stations in the Jiangsu Province of China
Abstract
:1. Introduction
2. Research Area and Data
2.1. Research Area
2.2. Data and Processing Method
2.2.1. CNEMC NO2 Products
2.2.2. MAX-DOAS NO2 Products
2.2.3. OMI NO2 Products
2.2.4. TROPOMI NO2 Products
2.3. Validation Method
3. Results and Discussion
3.1. Spatial Distribution of Satellites’ Trop NO2 VCD and CNEMC NO2
3.2. Validation Analysis of the TROPOMI and OMI Trop NO2 VCD
3.2.1. Background Correction for the Comparison of TROPOMI and CNEMC Sites
3.2.2. Comparison of the Trop VCD Retrieved from TROPOMI and MAX-DOAS
3.2.3. Comparison of the TROPOMI and OMI
4. Conclusions
- (1)
- At the urban level, the mass concentration of NO2 in 13 prefecture-level cities of Jiangsu Province was highly correlated with the monthly average of the Trop NO2 VCD given by TROPOMI, with the value of r ranging from 0.81 to 0.97, which shows that TROPOMI provides an assessment of its applicability in monitoring urban pollution levels. At the provincial level, the r between TROPOMI and the CNEMC sites is 0.9. It further indicates that TROPOMI data can better reflect NO2 concentration pollution in areas without ground station monitoring.
- (2)
- Three NO2 dates (TROPOMI, OMI and CNEMC) in Jiangsu Province exhibit a similar tendency and seasonality. The TROPOMI monthly averaged Trop NO2 VCD has been consistently lower than the ground-based MAX-DOAS observation results, whereas the OMI values are higher than the TROPOMI values. This is possibly because the OMI grid unit partially covers the southwest area of the test site, which is more affected by pollution flows from urban areas.
- (3)
- The RMSE between the TROPOMI monthly average Trop NO2 VCD and MAX-DOAS data is 2.03 × 1015 molec/cm2, which is lower than that between the OMI and MAX-DOAS data at 2.43 × 1015 molec/cm2. The MAPE value between the TROPOMI and MAX-DOAS data is 0.22, which is lower than that between the OMI and MAX-DOAS data 0.23. The r between the TROPOMI and MAX-DOAS data is higher than that between the OMI and MAX-DOAS data (r = 0.69 > 0.59). Moreover, the r between the TROPOMI and CNEMC data is higher than that between the OMI and CNEMC (r = 0.9 > 0.78). The comparative analysis of the accuracy of OMI and TROPOMI NO2 products further indicates that with the improvement of the load performance, the TROPOMI load is better than the previous generation of OMI load at representing the distribution of NO2 in the regional scope.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Zheng, X.X.; Li, L.J.; Zhao, W.J.; Zhao, W.H. Spatial and temporal characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei region. Ecol. Environ. Sci. 2014, 23, 1938–1945. [Google Scholar]
- Lu, X.; Zhang, S.; Xing, J.; Wang, Y.; Chen, W.; Ding, D.; Wu, Y.; Wang, S.; Duan, L.; Hao, J. Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering 2020, 6, 1423–1431. [Google Scholar] [CrossRef]
- Gu, J.; Chen, L.; Yu, C.; Li, S.; Tao, J.; Fan, M.; Xiong, X.; Wang, Z.; Shang, H.; Su, L. Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations. Remote Sens. 2017, 9, 519. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.C.; Krewski, D.; Diver, W.R.; Pope, C.A., III; Burnett, R.T.; Jerrett, M.; Marshall, J.D.; Gapstur, S.M. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. Environ. Health Perspect. 2017, 125, 087013. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int. 2016, 86, 92–106. [Google Scholar] [CrossRef]
- Cai, K.; Li, S.; Zheng, F.; Yu, C.; Zhang, X.; Liu, Y.; Li, Y. Spatio-temporal variations in NO2 and PM2. 5 over the central plains economic region of China during 2005–2015 based on satellite observations. Aerosol Air Qual. Res. 2018, 18, 1221–1235. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Fang, Z.; Qiu, H.; Li, X.; Zhang, Y. The progress in trace gas remote sensing study based on the satellite monitoring. Meteorol. Mon. 2007, 7, 3–14. [Google Scholar]
- Zhang, X.; Wang, F.; Wang, W.; Huang, F.; Chen, B.; Gao, L.; Wang, S.; Yan, H.; Ye, H.; Si, F.; et al. The development and application of satellite remote sensing for atmospheric compositions in China. Atmos. Res. 2020, 245, 105056. [Google Scholar] [CrossRef]
- Cai, K.; Zhang, Q.; Li, S.; Li, Y.; Ge, W. Spatial-Temporal Variations in NO2 and PM2.5 over the Chengdu-Chongqing Economic Zone in China during 2005–2015 Based on Satellite Remote Sensing. Sensors 2018, 18, 3950. [Google Scholar] [CrossRef] [Green Version]
- Velders, G.J.; Granier, C.; Portmann, R.W.; Pfeilsticker, K.; Wenig, M.; Wagner, T.; Platt, U.; Richter, A.; Burrows, J.P. Global tropospheric NO2 column distributions: Comparing three-dimensional model calculations with GOME measurements. J. Geophys. Res. Atmos. 2001, 106, 12643–12660. [Google Scholar] [CrossRef]
- Richter, A.; Burrows, J. A multi wavelength approach for the retrieval of tropospheric NO2 from GOME measurements. In Proceedings of the ERS ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Richter, A.; Burrows, J. Tropospheric NO2 from GOME measurements. Adv. Space Res. 2002, 29, 1673–1683. [Google Scholar] [CrossRef]
- Meyer, J.; Schlesier, A.; Rozanov, A.; Bovensmann, H.; Burrows, J. Towards O3 and NO2 vertical profile retrieval from SCIAMACHY solar occultation measurements: First results. Adv. Space Res. 2004, 34, 744–748. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality, and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.W.; van den Oord, G.H.; Bhartia, P.K.; Tamminen, J.; de Haan, J.F.; Veefkind, J.P. Science objectives of the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, P.; Wang, W. Assessment of the Performance of TROPOMI NO2 and SO2 Data Products in the North China Plain: Comparison, Correction, and Application. Remote Sens. 2022, 14, 214. [Google Scholar] [CrossRef]
- Lin, W.-L.; Xu, X.-B. The demands on atmosphere background observations in China to meet the validations of NO2 satellite remote sensing data. Meteorol. Mon. 2011, 37, 571–575. [Google Scholar]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.C.; Eskes, H.J.; Eichmann, K.U.; Fjæraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A.; et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS, and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, P.; Rakitin, V. Comparison and Validation of TROPOMI and OMI NO2 Observations over China. Atmosphere 2020, 11, 636. [Google Scholar] [CrossRef]
- Xu, J.; Xie, P.-H.; Si, F.-Q.; Li, A.; Dou, K.; Liu, Y.; Qin, M.; Wang, M.-H.; Zhang, Y.; Shi, P.; et al. Comparison of OMI and Ground-Based MAX-DOAS Measurements of Tropospheric Nitrogen Dioxide in Beijing During the Olympic Games. J. Atmos. Environ. Opt. 2009, 4, 347–355. [Google Scholar]
- Mou, F.; Li, A.; Xie, P.; Wang, Y.; Xu, J.; Zhang, J.; Chen, H.; Wu, F. Measurement and retrieval of tropospheric NO2 and aerosol optical depth based on MAX-DOAS. J. Atmos. Environ. Opt. 2015, 10, 231–238. [Google Scholar]
- Kramer, L.J.; Leigh, R.J.; Remedios, J.J.; Monks, P.S. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. J. Geophys. Res. Atmos. 2008, 113, D16. [Google Scholar] [CrossRef]
- Chan, K.L.; Wang, Z.; Ding, A.; Heue, K.P.; Shen, Y.; Wang, J.; Zhang, F.; Shi, Y.; Hao, N.; Wenig, M. MAX-DOAS measurements of tropospheric NO2 and HCHO in Nanjing and a comparison to ozone monitoring instrument observations. Atmos. Chem. Phys. 2019, 19, 10051–10071. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Ju, X.; Bao, M.; Lu, G.; Liu, Z.; Li, Y.; Mu, Y. Relationship between lightning activity and tropospheric nitrogen dioxide and the estimation of lightning-produced nitrogen oxides over China. Adv. Atmos. Sci. 2017, 34, 235–245. [Google Scholar] [CrossRef]
- Miyazaki, K.; Eskes, H.J.; Sudo, K.; Zhang, C. Global lightning NOx production estimated by an assimilation of multiple satellite data sets. Atmos. Chem. Phys. 2014, 14, 3277–3305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, J.; Wang, Y.; Yu, S. remote sensing monitoring of tropospheric NO2 density in Beijing-Tianjin-Hebei region based on OMI data. Resour. Environ. Yangtze River Basin 2018, 27, 443–452. [Google Scholar]
- Liu, M.; Lin, J.; Kong, H.; Boersma, K.F.; Eskes, H.; Kanaya, Y.; He, Q.; Tian, X.; Qin, K.; Xie, P.; et al. A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections. Atmos. Meas. Tech. 2020, 13, 4247–4259. [Google Scholar] [CrossRef]
- Griffin, D.; Zhao, X.; McLinden, C.A.; Boersma, F.; Bourassa, A.; Dammers, E.; Degenstein, D.; Eskes, H.; Fehr, L.; Fioletov, V.; et al. High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands. Geophys. Res. Lett. 2019, 46, 1049–1060. [Google Scholar] [CrossRef] [Green Version]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 2020, 13, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Griffin, D.; Fioletov, V.; McLinden, C.; Cede, A.; Tiefengraber, M.; Müller, M.; Bognar, K.; Strong, K.; Boersma, F.; et al. Assessment of the quality of TROPOMI high-spatial-resolution NO2 data products in the Greater Toronto Area. Atmos. Meas. Tech. 2020, 13, 2131–2159. [Google Scholar] [CrossRef]
- Judd, L.M.; Al-Saadi, J.A.; Szykman, J.J.; Valin, L.C.; Janz, S.J.; Kowalewski, M.G.; Eskes, H.J.; Veefkind, J.P.; Cede, A.; Mueller, M.; et al. Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound. Atmos. Meas. Tech. 2020, 13, 6113–6140. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Wiegner, M.; van Geffen, J.; De Smedt, I.; Alberti, C.; Cheng, Z.; Ye, S.; Wenig, M. MAX-DOAS measurements of tropospheric NO2 and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations. Atmos. Meas. Tech. 2020, 13, 4499–4520. [Google Scholar] [CrossRef]
- Si, Y.; Chen, L.; Xiong, X.; Shi, S.; Husi, L.; Cai, K. Evaluation of the MISR fine resolution aerosol product using MODIS, MISR, and ground observations over China. Atmos. Environ. 2020, 223, 117229. [Google Scholar] [CrossRef]
- Chi, Y.; Fan, M.; Zhao, C.; Yang, Y.; Fan, H.; Yang, X.; Yang, J.; Tao, J. Machine learning-based estimation of ground-level NO2 concentrations over China. Sci. Total Environ. 2022, 807, 150721. [Google Scholar] [CrossRef] [PubMed]
- Hönninger, G.; Von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Beirle, S.; Lampel, J.; Koukouli, M.; De Smedt, I.; Theys, N.; Li, A.; Wu, D.; Xie, P.; Liu, C.; et al. Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: Investigation of the effects of prior profiles and aerosols on the satellite products. Atmos. Chem. Phys. 2017, 17, 5007–5033. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Mo, F.; Li, S.; Wei, M.; Luo, J. MAX-DOAS Observation and OMI Comparison of NO2 Column Concentration in Troposphere in Huaibei. J. Huaibei Norm. Univ. 2017, 38, 2. [Google Scholar]
- Guo, Y.; Qi, H.; Li, S.; Mou, F. MAX-DOAS Observation of NO2 Vertical Column Density in Huaibei Area. J. Atmos. Environ. Opt. 2021, 16, 107–116. [Google Scholar]
- Dobber, M.R.; Dirksen, R.J.; Levelt, P.F.; van den Oord, G.H.; Voors, R.H.; Kleipool, Q.; Jaross, G.; Kowalewski, M.; Hilsenrath, E.; Leppelmeier, G.W.; et al. Ozone monitoring instrument calibration. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1209–1238. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; Brinksma, E.J.; Van Der A, R.J.; Sneep, M.V.; Van Den Oord, G.H.J.; Levelt, P.F.; Stammes, P.; Gleason, J.F.; et al. Near-real-time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 2007, 7, 2103–2118. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Landgraf, J.; Detmers, R.; Borsdorff, T.; Aan de Brugh, J.; Aben, I.; Butz, A.; Hasekamp, O. Toward global mapping of methane with TROPOMI: First results and inter-satellite comparison to GOSAT. Geophys. Res. Lett. 2018, 45, 3682–3689. [Google Scholar] [CrossRef]
- Bilal, M.; Mhawish, A.; Nichol, J.E.; Qiu, Z.; Nazeer, M.; Ali, M.A.; de Leeuw, G.; Levy, R.C.; Wang, Y.; Chen, Y.; et al. Air pollution scenario over Pakistan: Characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases. Remote Sens. Environ. 2021, 264, 112617. [Google Scholar] [CrossRef]
Precision | 0.05° × 0.05° Grid | 0.1° × 0.1° Grid | 0.2° × 0.2° Grid | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | MAX-DOAS | TROPOMI | RMSE | MAPE | MAX-DOAS | TROPOMI | RMSE | MAPE | MAX-DOAS | TROPOMI | RMSE | MAPE |
3 | 13.47 | 12.45 | 1.02 | 0.08 | 13.47 | 10.66 | 2.81 | 0.21 | 13.47 | 11.01 | 2.46 | 0.18 |
4 | 13.14 | 11.02 | 2.12 | 0.16 | 12.93 | 9.48 | 3.45 | 0.27 | 13.95 | 9.12 | 4.83 | 0.35 |
5 | 7.95 | 7.51 | 0.44 | 0.06 | 7.23 | 7.96 | 0.73 | 0.1 | 7.23 | 8.18 | 0.95 | 0.13 |
6 | 7.08 | 5.56 | 1.52 | 0.21 | 6.75 | 5.17 | 1.58 | 0.23 | 6.87 | 5.29 | 1.58 | 0.23 |
7 | 8.39 | 4.51 | 3.88 | 0.46 | 8.19 | 5.52 | 2.67 | 0.33 | 8.52 | 4.94 | 3.58 | 0.42 |
8 | 8.32 | 5.05 | 3.27 | 0.39 | 7.94 | 5.09 | 2.85 | 0.36 | 7.01 | 4.75 | 2.26 | 0.32 |
9 | 6.63 | 4.83 | 1.8 | 0.27 | 6.14 | 4.60 | 1.54 | 0.25 | 7.57 | 4.20 | 3.37 | 0.45 |
10 | 10.67 | 8.34 | 2.33 | 0.22 | 10.32 | 7.58 | 2.74 | 0.27 | 10.68 | 6.83 | 3.85 | 0.36 |
11 | 10.94 | 9.03 | 1.91 | 0.17 | 10.94 | 8.94 | 2.0 | 0.18 | 10.94 | 8.43 | 2.51 | 0.23 |
Mean | 2.03 | 0.22 | 2.26 | 0.24 | 2.82 | 0.29 |
Precision | 0.1° × 0.1° Grid | 0.2° × 0.2° Grid | 0.25° × 0.25° Grid | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | MAX-DOAS | OMI | RMSE | MAPE | MAX-DOAS | OMI | RMSE | MAPE | MAX-DOAS | OMI | RMSE | MAPE |
3 | 8.74 | 12.94 | 4.2 | 0.48 | 13.25 | 20.49 | 7.24 | 0.55 | ||||
4 | 15.37 | 12.63 | 2.74 | 0.18 | 13.76 | 10.77 | 2.99 | 0.22 | 14.13 | 11.32 | 2.81 | 0.2 |
5 | 9.05 | 7.31 | 1.74 | 0.19 | 9.05 | 6.87 | 2.18 | 0.24 | 9.05 | 6.61 | 2.44 | 0.27 |
6 | 4.49 | 7.63 | 3.14 | 0.7 | 7.09 | 7.51 | 0.42 | 0.06 | 7.09 | 7.34 | 0.25 | 0.04 |
7 | 14.3 | 8.37 | 5.93 | 0.41 | 7.83 | 6.98 | 0.85 | 0.11 | 8.00 | 7.09 | 0.91 | 0.11 |
8 | 11.35 | 8.39 | 2.96 | 0.26 | 7.49 | 6.04 | 1.45 | 0.19 | 7.55 | 6.68 | 0.87 | 0.12 |
9 | 10.93 | 9.94 | 0.99 | 0.09 | 8.30 | 8.07 | 0.23 | 0.03 | 8.46 | 8.48 | 0.02 | 0.0 |
10 | 14.96 | 11.19 | 3.77 | 0.25 | 13.06 | 13.59 | 0.53 | 0.04 | 11.65 | 14.02 | 2.37 | 0.2 |
11 | 12.89 | 21.92 | 9.03 | 0.7 | 11.09 | 19.84 | 8.75 | 0.79 | ||||
Mean | 3.03 | 0.29 | 2.43 | 0.23 | 2.85 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, K.; Li, S.; Lai, J.; Xia, Y.; Wang, Y.; Hu, X.; Li, A. Evaluation of TROPOMI and OMI Tropospheric NO2 Products Using Measurements from MAX-DOAS and State-Controlled Stations in the Jiangsu Province of China. Atmosphere 2022, 13, 886. https://doi.org/10.3390/atmos13060886
Cai K, Li S, Lai J, Xia Y, Wang Y, Hu X, Li A. Evaluation of TROPOMI and OMI Tropospheric NO2 Products Using Measurements from MAX-DOAS and State-Controlled Stations in the Jiangsu Province of China. Atmosphere. 2022; 13(6):886. https://doi.org/10.3390/atmos13060886
Chicago/Turabian StyleCai, Kun, Shenshen Li, Jibao Lai, Yu Xia, Yapeng Wang, Xuefei Hu, and Ang Li. 2022. "Evaluation of TROPOMI and OMI Tropospheric NO2 Products Using Measurements from MAX-DOAS and State-Controlled Stations in the Jiangsu Province of China" Atmosphere 13, no. 6: 886. https://doi.org/10.3390/atmos13060886
APA StyleCai, K., Li, S., Lai, J., Xia, Y., Wang, Y., Hu, X., & Li, A. (2022). Evaluation of TROPOMI and OMI Tropospheric NO2 Products Using Measurements from MAX-DOAS and State-Controlled Stations in the Jiangsu Province of China. Atmosphere, 13(6), 886. https://doi.org/10.3390/atmos13060886