WRF Model Sensitivity to Spatial Resolution in Singapore: Analysis for a Heavy Rain Event and General Suitability
Abstract
:1. Introduction
2. Experimental Methods
2.1. Observations
2.2. Radar-Derived Rain Rates
2.3. Numerical Weather Prediction
2.4. Measuring Forecast Performance
2.5. Choosing WRF Configuration
3. Results
3.1. Performance on Testing Set Compared to Ground Observations
3.2. Performance on Testing Set Compared to Radar-Derived Rain Rates
3.3. Performance on 10 January 2021 Heavy Rain Event
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svetlana, D.; Radovan, D.; Ján, D. The Economic Impact of Floods and their Importance in Different Regions of the World with Emphasis on Europe. Procedia Econ. Financ. 2015, 34, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Gulev, S.K.; Thorne, P.W.; Ahn, J.; Dentener, F.J.; Domingues, C.M.; Gerland, S.; Gong, D.; Kaufman, D.S.; Nnamchi, H.C.; Quaas, J.; et al. 2021: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to Sixth Assessment Report of the Intergovernment Panel on Climate Change; Cambridge University Press: Cambridge, UK, in press; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_02.pdf (accessed on 6 April 2022).
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. 2021: Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to Sixth Assessment Report of the Intergovernment Panel on Climate Change; Cambridge University Press: Cambridge, UK, in press; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_11.pdf (accessed on 6 April 2022).
- Ayzel, G.; Heistermann, M.; Sorokin, A.; Nikitin, O.; Lukyanova, O. All convolutional neural networks for radar-based precipitation nowcasting. Procedia Comput. Sci. 2019, 150, 186–192. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Guan, J.; Wu, M.; Guo, L. Rn-net: A deep learning approach to 0–2 h rainfall nowcasting based on radar and automatic weather station data. Sensors 2021, 21, 1981. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J.T. GPS-Derived PWV for rainfall nowcasting in tropical region. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4835–4844. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Jeworrek, J.; West, G.; Stull, R. WRF Precipitation Performance and Predictability for Systematically Varied Parameterizations over Complex Terrain. Weather Forecast. 2021, 36, 893–913. [Google Scholar] [CrossRef]
- Woodhams, B.J.; Birch, C.E.; Marsham, J.H.; Bain, C.L.; Roberts, N.M.; Boyd, D.F. What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa? Mon. Weather Rev. 2018, 146, 2757–2780. [Google Scholar] [CrossRef]
- Dipankar, A.; Webster, S.; Sun, X.; Sanchez, C.; North, R.; Furtado, K.; Wilkinson, J.; Lock, A.; Vosper, S.; Huang, X.-Y. SINGV: A convective-scale weather forecast model for Singapore. Q. J. R. Meteorol. Soc. 2020, 146, 4131–4146. [Google Scholar] [CrossRef]
- Jolivet, S.; Chane-Ming, F. WRF Modelling of Turbulence Triggering Convective Thunderstorms over WRF Modelling of Turbulence Triggering Convective Thunderstorms over Singapore. In Turbulence and Interactions; Deville, M., Estivalezes, J.L., Gleize, V., Lê, T.H., Terracol, M., Vincent, S., Eds.; Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Springer: Berlin/Heidelberg, Germany, 2014; Volume 125, pp. 115–122. [Google Scholar] [CrossRef]
- Clark, P.; Roberts, N.; Lean, H.; Ballard, S.P.; Charlton-Perez, C. Convection-permitting models: A step-change in rainfall forecasting. Meteorol. Appl. 2016, 23, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Sangati, M.; Borga, M. Influence of rainfall spatial resolution on flash flood modelling. Nat. Hazards Earth Syst. Sci. 2009, 9, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Moya-Álvarez, A.S.; Martínez-Castro, D.; Kumar, S.; Estevan, R.; Silva, Y. Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography. Theor. Appl. Climatol. 2019, 137, 2993–3007. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convecive Events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Faggian, N.A.T.H.A.N.; Roux, B.; Steinle, P.; Ebert, B. Fast calculation of the fractions skill score. Mausam 2015, 66, 457–466. Available online: https://metnet.imd.gov.in/mausamdocs/166310_F.pdf (accessed on 6 April 2022). [CrossRef]
- Mittermaier, M.; Roberts, N. Intercomparison of Spatial Forecast Verification Methods: Identifying Skillful Spatial Scales Using the Fractions Skill Score. Weather Forecast. 2010, 25, 343–354. [Google Scholar] [CrossRef]
- Huva, R.; Song, G.; Zhong, X.; Zhao, Y. Comprehensive physics testing and adaptive WRF physics for day-ahead solar forecasting. Meteorol. Appl. 2021, 28, 1–13. [Google Scholar] [CrossRef]
Threshold (mm/h) | Hit-Rate | False-Alarm Rate | Critical Success Index |
---|---|---|---|
0.5 | 0.753 | 0.208 | 0.628 |
1.0 | 0.73 | 0.216 | 0.608 |
2.0 | 0.682 | 0.231 | 0.566 |
4.0 | 0.63 | 0.256 | 0.518 |
8.0 | 0.607 | 0.274 | 0.493 |
16.0 | 0.595 | 0.287 | 0.48 |
32.0 | 0.592 | 0.292 | 0.476 |
64.0 | 0.591 | 0.292 | 0.475 |
Threshold (T) | Observation (O) | ||
---|---|---|---|
O > T | O ≤ T | ||
Forecast (F) | F > T | a | b |
F ≤ T | c | d |
Configuration | Microphysics | Cumulus Physics | Long-Wave Radiation Model | Short-Wave Radiation Model | Planetary Boundary Layer | Surface Layer Physics | Land Surface Model |
---|---|---|---|---|---|---|---|
3, 9, 12 km | 8 | 11 | 4 | 4 | 1 | 91 | 2 |
1 km | 8 | 0 | 4 | 4 | 1 | 91 | 2 |
0.5 mm/h | 2 mm/h | 8 mm/h | |||||||
---|---|---|---|---|---|---|---|---|---|
4 November 2020 | HR | FAR | CSI | HR | FAR | CSI | HR | FAR | CSI |
1 km | 0.397 | 0.366 | 0.406 | 0.352 | 0.052 | 0.345 | 0.013 | 0.981 | 0.008 |
3 km | 0.403 | 0.019 | 0.399 | 0.368 | 0.066 | 0.358 | 0.0 | 1.0 | 0.0 |
9 km | 0.39 | 0.273 | 0.34 | 0.261 | 0.069 | 0.256 | 0 | N/A | 0 |
12 km | 0.351 | 0.251 | 0.314 | 0.065 | 0.394 | 0.062 | 0 | N/A | 0 |
0.5 mm/h | 2 mm/h | 8 mm/h | |||||||
---|---|---|---|---|---|---|---|---|---|
9 January 2021 | HR | FAR | CSI | HR | FAR | CSI | HR | FAR | CSI |
1 km | 0.197 | 0.558 | 0.158 | 0.028 | 0.85 | 0.024 | 0 | 1 | 0 |
3 km | 0 | N/A | 0 | 0 | N/A | 0 | 0 | N/A | 0 |
9 km | 0 | N/A | 0 | 0 | N/A | 0 | 0 | N/A | 0 |
12 km | 0 | N/A | 0 | 0 | N/A | 0 | 0 | N/A | 0 |
0.5 mm/h | 2 mm/h | 8 mm/h | |||||||
---|---|---|---|---|---|---|---|---|---|
17 April 2021 | HR | FAR | CSI | HR | FAR | CSI | HR | FAR | CSI |
1 km | 0.26 | 0.126 | 0.251 | 0.181 | 0.06 | 0.178 | 0.046 | 0.5 | 0.044 |
3 km | 0.268 | 0.351 | 0.234 | 0.115 | 0.31 | 0.109 | 0.005 | 0.889 | 0.004 |
9 km | 0.024 | 0 | 0.024 | 0 | N/A | 0 | 0 | N/A | 0 |
12 km | 0.072 | 0.206 | 0.071 | 0 | N/A | 0 | 0 | N/A | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huva, R.; Song, G. WRF Model Sensitivity to Spatial Resolution in Singapore: Analysis for a Heavy Rain Event and General Suitability. Atmosphere 2022, 13, 606. https://doi.org/10.3390/atmos13040606
Huva R, Song G. WRF Model Sensitivity to Spatial Resolution in Singapore: Analysis for a Heavy Rain Event and General Suitability. Atmosphere. 2022; 13(4):606. https://doi.org/10.3390/atmos13040606
Chicago/Turabian StyleHuva, Robert, and Guiting Song. 2022. "WRF Model Sensitivity to Spatial Resolution in Singapore: Analysis for a Heavy Rain Event and General Suitability" Atmosphere 13, no. 4: 606. https://doi.org/10.3390/atmos13040606
APA StyleHuva, R., & Song, G. (2022). WRF Model Sensitivity to Spatial Resolution in Singapore: Analysis for a Heavy Rain Event and General Suitability. Atmosphere, 13(4), 606. https://doi.org/10.3390/atmos13040606