Extreme Precipitation Events in Alaska: Historical Trends and Projected Changes
Abstract
:1. Introduction
2. Data and Methods
2.1. Precipitation Data
2.2. Climate Model Projections
3. Synopsis of Events
3.1. Fairbanks, August 1967
3.2. Seward, October 1986
3.3. Allakaket/Bettles, August 1994
3.4. Kivalina, August 2012
3.5. Haines, December 2020
4. Results and Discussion
4.1. Synoptic and Historical Perspectives
4.2. Future Projections
5. Conclusions
- Subtropical or tropical moisture sources characterized the five major flood events.
- There are no statistically significant historical trends in the station data or the reanalysis output at any of the five locations.
- Events that historically have had 2 and 5 year return intervals are projected to be more extreme in the future, with decreases projected in only one region (Seward on the southern coast).
- Four of the five historical floods were unique in the ERA reanalysis for their locations, and such events are projected to remain rare. However, events that historically occurred only once every few years are generally projected to become much more frequent, especially in the Interior, and in some cases are projected to occur several times a year.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rauber, R.M.; Walsh, J.E.; Charlevoix, D.C. Severe and Hazardous Weather: An. Introduction to High-Impact Meteorology, 5th ed.; Kendall-Hunt: Dubuque, IA, USA, 2017. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.J.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Ch. 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Government Printing Office: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Vincent, L.A.; Mekis, E. Changes in Daily and Extreme Temperature and Precipitation Indices for Canada over the Twentieth Century. Atmos.-Ocean 2006, 44, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Borzenkova, A.V.; Shmakin, A.B. Changes in snow cover thickness and daily snowfall intensity affecting the highways cleaning expenses in Russian cities. Ice Snow 2012, 2, 59–70. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Peterson, T.C.; Zhang, X.; Brunet-India, M.; Vázquez-Aguirre, J.L. Changes in North American extremes derived from daily weather data. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Crawford, A.D.; Barrett, A.P. Extreme daily precipitation events at Spitsbergen, an Arctic Island. Int. J. Clim. 2015, 35, 4574–4588. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Walsh, J.E. Atmospheric circulation patterns associated with monthly and daily temperature and precipitation extremes in Alaska. Int. J. Clim. 2017, 37, 208–217. [Google Scholar] [CrossRef]
- Lader, R.T.; Walsh, J.E.; Bhatt, U.S.; Bieniek, P.A. Projections of 21st century climate extremes for Alaska via dynamical downscaling and quantile mapping. J. Appl. Meteor. Climatol. 2017, 56, 2393–2409. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett. 2013, 40, 4887–4892. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Landrum, L.; Holland, M.M. Extremes become routine in an emerging new Arctic. Nat. Clim. Change 2020, 10, 1108–1115. [Google Scholar] [CrossRef]
- Pithan, F.; Jung, T. Arctic Amplification of Precipitation Changes—The Energy Hypothesis. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- McCrystall, M.R.; Stroeve, J.; Serreze, M.; Forbes, B.C.; Screen, J.A. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 2021, 12, 6765. [Google Scholar] [CrossRef] [PubMed]
- Bieniek, P.A.; Bhatt, U.; Thoman, R.L.; Angeloff, H.; Partain, J.; Papineau, J.; Fritsch, F.; Holloway, E.; Walsh, J.; Daly, C.; et al. Climate Divisions for Alaska Based on Objective Methods. J. Appl. Meteorol. Clim. 2012, 51, 1276–1289. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wang, C.; Graham, R.M.; Wang, K.; Gerland, S.; Granskog, M.A. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere 2019, 13, 1661–1679. [Google Scholar] [CrossRef] [Green Version]
- Crossett, C.C.; Betts, A.K.; Dupigny-Giroux, L.-A.L.; Bomblies, A. Evaluation of Daily Precipitation from the ERA5 Global Reanalysis against GHCN Observations in the Northeastern United States. Climate 2020, 8, 148. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Bromwich, D.H.; Wilson, A.B.; Justino, F.; Wang, S.-H. Climate Extremes across the North American Arctic in Modern Reanalyses. J. Clim. 2021, 34, 2385–2410. [Google Scholar] [CrossRef]
- Walsh, J.E.; Bhatt, U.S.; Littell, J.S.; Leonawicz, M.; Lindgren, M.A.; Kurkowski, T.A.; Bieniek, P.A.; Thoman, R.; Gray, S.; Rupp, T.S. Downscaling of climate model output for Alaskan stakeholders. Environ. Modeling Softw. 2018, 110, 38–51. [Google Scholar] [CrossRef]
- Parding, K.M.; Dobler, A.; McSweeney, C.F.; Landgren, O.A.; Benestad, R.; Erlandsen, H.B.; Mezghani, A.; Gregow, H.; Räty, O.; Viktor, E.; et al. GCMeval—An interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 2020, 18, 100167. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.-y.; Wanf, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note 2008. Available online: http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (accessed on 27 January 2022).
- Bieniek, P.A.; Bhatt, U.S.; Walsh, J.; Rupp, T.S.; Zhang, J.; Krieger, J.R.; Lader, R. Dynamical Downscaling of ERA-Interim Temperature and Precipitation for Alaska. J. Appl. Meteorol. Clim. 2016, 55, 635–654. [Google Scholar] [CrossRef]
- Childers, J.M.; Meckel, J.P.; Anderson, G.S. Floods of August 1967 in east-central Alaska. Geol. Surv. Water-Supply Pap. 1972, 77, 24. [Google Scholar] [CrossRef]
- Percia, S.; Kane, D.; Dietz, S.; Maitaria, K.; Martin, D.; Pavlovic, S.; Roy, I.; Stuefer, S.; Tidwell, A.; Trypaluk, C.; et al. Precipitation-Frequency Atlas of the United States, Alaska. NOAA Atlas 14, Volume 7 Version 2.0; National Weather Service: Silver Spring, MD, USA, 2012. [Google Scholar]
- Jones, S.H.; Zenone, C. Flood of October 1986 Seward, Alaska; Water-Resources Investigations Report 95-4118; U.S. Geological Survey: Anchorage, AK, USA, 1988. [Google Scholar]
- Brettschneider, B.; Trypaluk, C. Reexamination of the Alaska 1-Day Record Rainfall. Bull. Am. Meteorol. Soc. 2014, 95, 1249–1256. [Google Scholar] [CrossRef]
- Meyer, D.F. Flooding in the Middle Koyukuk River Basin, Alaska, August 1994; Water-Resources Investigations Report 95-4118; U.S. Geological Survey: Anchorage, AK, USA, 1995. [Google Scholar]
- DLA. Audit Report Department of Military and Veterans Affairs Koyukuk Flood Response and Recovery; Division of Legislative Audit: Juneau, AK, USA, 1996. [Google Scholar]
- White, J.H.R.; Walsh, J.E.; Thoman, R.L. Using Bayesian statistics to detect trends in Alaskan precipitation. Int. J. Climatol. 41. [CrossRef]
- AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policymakers. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway. 2021. Available online: https://www.amap.no/documents/doc/arctic-climate-change-update-2021-key-trends-and-impacts.-summary-for-policy-makers/3508 (accessed on 27 January 2022).
- Romanovsky, V.; Isaksen, K.; Drozdov, D.; Bulygina, O.; Anisimov, O.; Instanes, A.; Leibman, M.; McGuire, A.D.; Shiklomanov, N.; Smith, S.; et al. Changing permafrost and its impacts. In Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017; pp. 65–102. [Google Scholar]
- Hewitt, B.A.; Lopez, L.S.; Gaibisels, K.M.; Murdoch, A.; Higgins, S.N.; Magnuson, J.J.; Paterson, A.M.; Rusak, J.A.; Yao, H.; Sharma, S. Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region. Water 2018, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M.; World Glacier Monitoring Network. Alpine glaciers [in State of the Climate in 2019]. Bull. Am. Meteorol. Soc. 2020, 101, S37–S38. [Google Scholar] [CrossRef]
- Zhang, Z.; Ralph, F.M.; Zheng, M. The Relationship Between Extratropical Cyclone Strength and Atmospheric River Intensity and Position. Geophys. Res. Lett. 2019, 46, 1814–1823. [Google Scholar] [CrossRef]
- Sharma, A.R.; Déry, S.J. Contribution of Atmospheric Rivers to Annual, Seasonal, and Extreme Precipitation Across British Columbia and Southeastern Alaska. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
Station | Available Years | Used in Trend Analysis? | Years Excluded in Trend Analysis | Comments |
---|---|---|---|---|
University of Alaska Fairbanks Experimental Farm Fairbanks, AK, USA | 1904–2020 | Yes | 1904, 1905, 1908–1911, 1913, 1914, 1916, 1958, 1969, 1973, 1994 | In 2002 and 2003, zeros were recorded as NAs |
Fairbanks Airport Fairbanks, AK, USA | 1929–2020 | Yes | 1929 | |
Kivalina, AK USA | 1998–2020 | No | Not Applicable | Poor coverage |
Nome, AK, USA | 1900–2020 | Yes | 1900–1907, 1912, 1916, 1925 | Reliable Station near Kivalina |
Allakaket, AK, USA | 1907–1998 | No | Not Applicable | No coverage of the flood event and poor coverage overall |
Bettles, AK, USA | 1945–2020 | Yes | 1945–1951, 1959 | Reliable station near Allakaket |
Haines, AK, USA | 1911–2020 | No | Not Applicable | Poor coverage |
Juneau, AK, USA | 1936–2020 | Yes | 1936–1943 | Reliable station near Haines |
Seward, AK, USA | 1944–2020 | Yes | 1944, 1946, 1948, 1949, 1975, 1991, 1994, 1997, 1998, 2012, 2014 |
Location | Station 1 | Station 2 | Storm Total Exceedances: Station 1 | Storm Total Exceedances: Station 2 | Storm Total Exceedances: Reanalysis | |||
3 day total | 7 day total | 3 day total | 7 day total | 3 day total | 7 day total | |||
Fairbanks, AK, USA | University of Alaska Farm | Fairbanks Airport | 0 | 0 | 0 | 0 | 0 | 0 |
Seward, AK, USA | Seward Airport | N/A | 0 | 0 | N/A | N/A | 9 | 15 |
Bettles, AK, USA | Bettles Airport | N/A | 0 | 0 | N/A | N/A | 0 | 0 |
Kivalina, AK, USA | Kivalina Airport | Nome, AK, USA Airport | 0 | 0 | 64 | 11 | 0 | 0 |
Haines, AK, USA | Haines Airport | Juneau, AK, USA Airport | 0 | 0 | 4 | 1 | 0 | 0 |
Historical Exceedances (ERA5) | CCSM Future | GFDL Future | |
---|---|---|---|
(1970–2005) | (2065–2100) | (2065–2100) | |
Kivalina 3 day | 0 | 6 | 2 |
Kivalina 7 day | 0 | 4 | 4 |
Fairbanks 3 day | 0 | 0 | 0 |
Fairbanks 7 day | 0 | 0 | 1 |
Seward 3 day | 6 | 1 | 31 |
Seward 7 day | 7 | 6 | 38 |
Bettles 3 day | 1 | 0 | 7 |
Bettles 7 day | 1 | 0 | 11 |
Haines 3 day | 0 | 1 | 0 |
Haines 7 day | 0 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachand, C.L.; Walsh, J.E. Extreme Precipitation Events in Alaska: Historical Trends and Projected Changes. Atmosphere 2022, 13, 388. https://doi.org/10.3390/atmos13030388
Bachand CL, Walsh JE. Extreme Precipitation Events in Alaska: Historical Trends and Projected Changes. Atmosphere. 2022; 13(3):388. https://doi.org/10.3390/atmos13030388
Chicago/Turabian StyleBachand, Claire L., and John E. Walsh. 2022. "Extreme Precipitation Events in Alaska: Historical Trends and Projected Changes" Atmosphere 13, no. 3: 388. https://doi.org/10.3390/atmos13030388
APA StyleBachand, C. L., & Walsh, J. E. (2022). Extreme Precipitation Events in Alaska: Historical Trends and Projected Changes. Atmosphere, 13(3), 388. https://doi.org/10.3390/atmos13030388