Impact of the COVID-19 Pandemic on the 2020 Diurnal Temperature Range (DTR) in the Contiguous USA
Abstract
:1. Introduction
Objectives
2. Methodology
2.1. Data Collection
2.2. Data Processing
2.3. Data Splitting
3. Results and Discussion
3.1. Analysis of Full Data Set
3.2. Analysis of Different DTR Calculation Approaches and Randomly Split Data for Validity Check
3.3. Analysis of Environmental and Anthropogenic Factors
3.3.1. Annual Snowfall Amount
3.3.2. GDP per Capita
3.3.3. Population Density
3.3.4. Latitude
3.3.5. Longitude
3.4. Limitations of This DTR Versus Pandemic Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Kafrawy, S.A.; Corman, V.M.; Tolah, A.M.; Al Masaudi, S.B.; Hassan, A.M.; Müller, M.A.; Bleicker, T.; Harakeh, S.M.; Alzahrani, A.A.; Alsaaidi, G.A. Enzootic patterns of Middle East respiratory syndrome coronavirus in imported African and local Arabian dromedary camels: A prospective genomic study. Lancet Planet. Health 2019, 3, e521–e528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, I.; Alharbi, O.M. COVID-19: Disease, management, treatment, and social impact. Sci. Total Environ. 2020, 728, 138861. [Google Scholar] [CrossRef]
- Cheval, S.; Adamescu, C.M.; Georgiadis, T.; Herrnegger, M.; Piticar, A.; Legates, D.R. Observed and Potential Impacts of the COVID-19 Pandemic on the Environment. Int. J. Environ. Res. Public Health 2020, 17, 4140. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef] [PubMed]
- Higham, J.; Ramírez, C.A.; Green, M.; Morse, A.P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Qual. Atmos. Health 2020, 14, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Aboagye, E.M.; Attobrah, J.; Effah, N.A.A.; Afrane, S.; Mensah, F. “Fortune amidst misfortune”: The impact of COVID-19 city lockdowns on air quality. Sustain. Environ. 2021, 7, 1885185. [Google Scholar] [CrossRef]
- Chapman, L. Transport and climate change: A review. J. Transp. Geogr. 2007, 15, 354–367. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Cheng, X.; Lan, T.; Mao, R.; Gong, D.; Han, H.; Liu, X. Reducing air pollution increases the local diurnal temperature range: A case study of Lanzhou, China. Meteorol. Appl. 2020, 27, e1939. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Wu, J.; Zhou, L.; Feng, X.; Fu, T.-M.; Yang, X.; Ziegler, A.D.; Zeng, Z. Aerosol presence reduces the diurnal temperature range: An interval when the COVID-19 pandemic reduced aerosols revealing the effect on climate. Environ. Sci. Atmos. 2021, 1, 208–213. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern Global Climate Change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Travis, D.J.; Carleton, A.M.; Lauritsen, R.G. Contrails reduce daily temperature range. Nature 2002, 418, 601. [Google Scholar] [CrossRef] [PubMed]
- van Wijngaarden, W.A. Examination of diurnal temperature range at coterminous U.S. stations during Sept. 8–17, 2001. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2012, 109, 1–5. [Google Scholar] [CrossRef]
- Sandhu, A.S.; Baldini, J.U.L. Evaluating the Significance of the Contrail Effect on Diurnal Temperature Range Using the Eyjafjallajökull Eruption-Related Flight Disruption. Geophys. Res. Lett. 2018, 45, 13090–13098. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.; Yang, P.; Minnis, P.; Hu, Y.X.; North, G. Do contrails significantly reduce daily temperature range? Geophys. Res. Lett. 2008, 35, L23815. [Google Scholar] [CrossRef] [Green Version]
- Dietmüller, S.; Ponater, M.; Sausen, R.; Hoinka, K.-P.; Pechtl, S. Contrails, Natural Clouds, and Diurnal Temperature Range. J. Clim. 2008, 21, 5061–5075. [Google Scholar] [CrossRef] [Green Version]
- Gallo, K.P.; Easterling, D.R.; Peterson, T.C. The Influence of Land Use/Land Cover on Climatological Values of the Diurnal Temperature Range. J. Clim. 1996, 9, 2941–2944. [Google Scholar] [CrossRef]
- Roget, E.; Khan, V.M. Decadal differences of the diurnal temperature range in the Aral Sea region at the turn of the century. Tellus A Dyn. Meteorol. Oceanogr. 2018, 70, 1513290. [Google Scholar] [CrossRef]
- Bilbao, J.; Román, R.; De Miguel, A. Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011. Climate 2019, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, Z.; Yang, X.; Gong, H.; Li, C.; Xiong, A. The long-term trend in the diurnal temperature range over Asia and its natural and anthropogenic causes. J. Geophys. Res. Atmos. 2016, 121, 3519–3533. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadeh, F.; Sanchez-Lorenzo, A.; Hamedi, M.; Kruk, M.C.; Wild, M. New evidence on the dimming/brightening phenomenon and decreasing diurnal temperature range in Iran (1961–2009). Int. J. Clim. 2015, 35, 2065–2079. [Google Scholar] [CrossRef] [Green Version]
- Lauritsen, R.G.; Rogers, J.C. U.S. Diurnal Temperature Range Variability and Regional Causal Mechanisms, 1901–2002. J. Clim. 2012, 25, 7216–7231. [Google Scholar] [CrossRef]
- Mall, R.K.; Chaturvedi, M.; Singh, N.; Bhatla, R.; Singh, R.S.; Gupta, A.; Niyogi, D. Evidence of asymmetric change in diurnal temperature range in recent decades over different agro-climatic zones of India. Int. J. Clim. 2021, 41, 2597–2610. [Google Scholar] [CrossRef]
- Lewis, S.C.; Karoly, D.J. Evaluation of Historical Diurnal Temperature Range Trends in CMIP5 Models. J. Clim. 2013, 26, 9077–9089. [Google Scholar] [CrossRef] [Green Version]
- Selman, C.; Misra, V. Simulating diurnal variations over the southeastern United States. J. Geophys. Res. Atmos. 2015, 120, 180–198. [Google Scholar] [CrossRef]
- Liu, L.; Chen, W.; Guo, J.; Wu, R.; Wang, L.; Wang, S.; Huo, Y.; Tao, W. Large-scale pattern of the wintertime diurnal temperature range variations over North America during 1979–2018. Atmos. Res. 2021, 257, 105614. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Li, L.; Zhang, S.; Qin, Q. Environmental factors influencing snowfall and snowfall prediction in the Tianshan Mountains, Northwest China. J. Arid Land 2019, 11, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, C.; Li, Y.; Huang, Y.; Zhang, F.; Pan, T. High-latitude snowfall as a sensitive indicator of climate warming: A case study of Heilongjiang Province, China. Ecol. Indic. 2020, 122, 107249. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.; Huang, S.; Song, M. The influence of increased population density in China on air pollution. Sci. Total Environ. 2020, 735, 139456. [Google Scholar] [CrossRef] [PubMed]
- NCDC. Climate Data Online. 2021. Available online: https://ncdc.noaa.gov/cdo-web (accessed on 29 September 2021).
- World Media Group. USA.com—Search Rankings. 2022. Available online: http://www.usa.com/rank (accessed on 31 January 2022).
- National Weather Service. Climate. 2021. Available online: https://www.weather.gov/wrh/climate (accessed on 30 September 2022).
- Bureau of Economic Analysis. Gross Domestic Product (GDP) by State (Millions of Current Dollars). 2019. Available online: https://apps.bea.gov/iTable/index_nipa.cfm (accessed on 29 September 2021).
- US Census Bureau. Resident Population Data. 2010. Available online: https://web.archive.org/web/20111028061117/http://2010.census.gov/2010census/data/apportionment-dens-text.php (accessed on 29 September 2021).
- Hallas, L.; Hatibie, A.; Koch, R.; Majumdar, S.; Pyarali, M.; Wood, A.; Hale, T. Variation in US States’ COVID-19 Policy Responses. BSG Working Paper Series. BSG-WP-2020/034 Version 3. 2021. Available online: https://www.bsg.ox.ac.uk/research/publications/variation-us-states-responses-covid-19 (accessed on 30 January 2022).
- Delbert, C. States that Have Been Locked Down the Longest. Stacker. 2020. Available online: https://stacker.com/stories/4218/states-have-been-locked-down-longest (accessed on 5 January 2022).
- Sekar, M.; Kumar, T.P.; Kumar, M.S.G.; Vaníčková, R.; Maroušek, J. Techno-economic review on short-term anthropogenic emissions of air pollutants and particulate matter. Fuel 2021, 305, 121544. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Qu, M.; Wan, J.; Hao, X. Analysis of diurnal air temperature range change in the continental United States. Weather Clim. Extremes 2014, 4, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Gilford, D.M.; Smith, S.R.; Griffin, M.L.; Arguez, A. Southeastern U.S. Daily Temperature Ranges Associated with the El Niño–Southern Oscillation. J. Appl. Meteorol. Clim. 2013, 52, 2434–2449. [Google Scholar] [CrossRef]
- Leamon, R.J.; McIntosh, S.W.; Marsh, D.R. Termination of Solar Cycles and Correlated Tropospheric Variability. Earth Space Sci. 2021, 8, e2020EA001223. [Google Scholar] [CrossRef] [PubMed]
- Climate. El Niño & La Niña (El Niño-Southern Oscillation)—U.S. Impacts. 2021. Available online: https://www.climate.gov/enso (accessed on 30 September 2021).
- You, Q.; Ren, G.; Fraedrich, K.; Kang, S.; Ren, Y.; Wang, P. Winter temperature extremes in China and their possible causes. Int. J. Clim. 2013, 33, 1444–1455. [Google Scholar] [CrossRef]
- Walsh, C.R.; Patterson, R.T. Attribution of Observed Periodicity in Extreme Weather Events in Eastern North America. Earth Space Sci. 2022, 9, e2022EA002359. [Google Scholar] [CrossRef]
- Walsh, C.R.; Patterson, R.T. Regional impact of large-scale climate oscillations on ice out variability in New Brunswick and Maine. PeerJ 2022, 10, e13741. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.R.; Patterson, R.T. Precipitation and Temperature Trends and Cycles Derived from Historical 1890–2019 Weather Data for the City of Ottawa, Ontario, Canada. Environments 2022, 9, 35. [Google Scholar] [CrossRef]
- Vanek, F.M.; Albright, L.D. Energy Systems Engineering: Evaluation and Implementation; McGraw Hill: New York, NY, USA, 2008. [Google Scholar]
- Twomey, S.A.; Piepgrass, M.; Wolfe, T.L. An assessment of the impact of pollution on global cloud albedo. Tellus B Chem. Phys. Meteorol. 1984, 36, 356–366. [Google Scholar] [CrossRef]
- Jia, A.; Liang, S.; Wang, D.; Jiang, B.; Zhang, X. Air pollution slows down surface warming over the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 881–899. [Google Scholar] [CrossRef] [Green Version]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, L13217. [Google Scholar] [CrossRef]
- Sun, X.; Ren, G.; You, Q.; Ren, Y.; Xu, W.; Xue, X.; Zhan, Y.; Zhang, S.; Zhang, P. Global diurnal temperature range (DTR) changes since 1901. Clim. Dyn. 2019, 52, 3343–3356. [Google Scholar] [CrossRef]
- Ricke, K.L.; Caldeira, K. Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett. 2014, 9, 124002. [Google Scholar] [CrossRef]
- Our World in Data. United States: Coronavirus Pandemic Country Profile. 2021. Available online: https://ourworldindata.org/coronavirus/country/united-states (accessed on 29 September 2021).
- SpaceWeatherLive. The Aurora and Solar Activity Archive—November 2020. 2020. Available online: https://www.spaceweatherlive.com/en/archive/2020/11.html (accessed on 19 November 2022).
- Centers for Disease Control and Prevention: COVID Data Tracker—Wastewater Suveillance (2021). Available online: https://covid.cdc.gov/covid-data-tracker/#wastewdatatracker-home (accessed on 11 April 2022).
- NCEI. National Temperature and Precipitation Maps. 2021. Available online: https://www.ncdc.noaa.gov/temp-and-precip/us-maps/ (accessed on 30 September 2021).
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Scheitlin, K. The Maritime Influence on Diurnal Temperature Range in the Chesapeake Bay Area. Earth Interact. 2013, 17, 1–14. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef]
Year | Average (°C) | Set 1 (°C) | Set 2 (°C) | Difference1 (Avg.—Set 1) (°C) | Difference2 (Avg.—Set 2) (°C) | Set Difference (Set 1–Set 2) (Absolute) (°C) | Ratio Set Difference: Yearly Avg. (%) |
---|---|---|---|---|---|---|---|
2020 | 11.88 | 11.90 | 11.87 | −0.018 | 0.018 | 0.037 | 0.308% |
2019 | 11.69 | 11.71 | 11.67 | −0.021 | 0.021 | 0.042 | 0.356% |
2018 | 11.56 | 11.57 | 11.55 | −0.011 | 0.011 | 0.022 | 0.192% |
2017 | 11.85 | 11.86 | 11.85 | −0.003 | 0.003 | 0.005 | 0.046% |
2016 | 12.01 | 12.03 | 11.98 | −0.022 | 0.022 | 0.043 | 0.362% |
2015 | 11.99 | 12.01 | 11.97 | −0.022 | 0.022 | 0.044 | 0.371% |
6-yr avg. | 11.83 | 11.85 | 11.81 | ||||
6-yr std. dev. | 0.176 | 0.176 | 0.176 | ||||
Ratio yearly avg.: 6-yr std.dev. (%) | 1.49% | 1.49% | 1.49% |
Year | Conventional | Previous Tmin | Next Tmin | 3-Day Avg. Tmin | Largest Difference vs. Conventional (°C Absolute) |
---|---|---|---|---|---|
2020 | 11.88 | 11.89 | 11.89 | 11.89 | 0.014 |
2019 | 11.69 | 11.70 | 11.69 | 11.70 | 0.013 |
2018 | 11.56 | 11.59 | 11.53 | 11.57 | 0.036 |
2017 | 11.85 | 11.83 | 11.89 | 11.87 | 0.032 |
2016 | 12.01 | 12.02 | 12.01 | 12.02 | 0.015 |
2015 | 11.99 | 12.01 | 11.99 | 12.01 | 0.022 |
6-yr avg. | 11.83 | 11.84 | 11.83 | 11.85 | 0.015 |
Split Factors | Factor Sets | ΔDTR2020–2019 | ΔDTR2020_Mean-2020 |
---|---|---|---|
Snowfall amount | Top 24 | 0.41 | 0.25 |
Bottom 24 and DC | −0.01 | −0.23 | |
GDP per capita | Top 24 and DC | 0.36 | −0.10 |
Bottom 24 | 0.03 | 0.11 | |
Population density | Top 24 and DC | −0.14 | −0.96 |
Bottom 24 | 0.53 | 0.99 | |
Latitude | 24 Most Northern States | 0.48 | −0.22 |
24 Most Southern States and DC | −0.09 | 0.24 | |
Longitude | 24 Most Coastal States and DC | 0.02 | −0.48 |
24 Most Inner States | 0.36 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Hoffmann, L.M.; Al-Hasani, T.; Santos, R.M. Impact of the COVID-19 Pandemic on the 2020 Diurnal Temperature Range (DTR) in the Contiguous USA. Atmosphere 2022, 13, 2031. https://doi.org/10.3390/atmos13122031
Ahmed W, Hoffmann LM, Al-Hasani T, Santos RM. Impact of the COVID-19 Pandemic on the 2020 Diurnal Temperature Range (DTR) in the Contiguous USA. Atmosphere. 2022; 13(12):2031. https://doi.org/10.3390/atmos13122031
Chicago/Turabian StyleAhmed, Walid, Lydia Marini Hoffmann, Talib Al-Hasani, and Rafael M. Santos. 2022. "Impact of the COVID-19 Pandemic on the 2020 Diurnal Temperature Range (DTR) in the Contiguous USA" Atmosphere 13, no. 12: 2031. https://doi.org/10.3390/atmos13122031
APA StyleAhmed, W., Hoffmann, L. M., Al-Hasani, T., & Santos, R. M. (2022). Impact of the COVID-19 Pandemic on the 2020 Diurnal Temperature Range (DTR) in the Contiguous USA. Atmosphere, 13(12), 2031. https://doi.org/10.3390/atmos13122031