Health Impacts of Surface Ozone in Outdoor and Indoor Environments of Hattar Industrial Units, KPK, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area and Sample Size
2.2. Statistical Analysis for Temporal Variation in Ground-Level Ozone (Indoor)
2.3. Sampling Sites (Outdoor)
2.4. Sample Size (Outdoor)
2.5. Statistical Package for the Social Sciences (SPSS)
2.6. Statistical Modeling Equation for Attributable Risk (AP)
3. Results
3.1. Indoor Ozone Concentration
3.1.1. Concentration of Ozone in Food Industry
3.1.2. Ozone Concentration in Steel Industry
3.1.3. Ozone Concentration in Oil Industry
3.1.4. Temporal Variations in Food, Steel, and Oil Industries
3.2. Outdoor Ozone Concentration
3.2.1. Trends and Spatial Variability of Ozone in Three Cities of Pakistan
3.2.2. Comparison of Over Than Standard Values of Ozone for Three Cities
3.2.3. Prevalence of Disease in Population Exposed to Ozone Pollution in Three Megacities of Pakistan
3.2.4. Population Attributable Proportion for Ozone Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
(ppm) | parts per million |
FDA | The Food and Drug Administration |
GIT | Gastrointestinal tract |
Ppb | Parts per billion |
O3 | ozone |
PM | Particulate matter |
NO2 | Nitrogen dioxide |
SO2 | Sulfur dioxide |
References
- Bourdrel, T.; Annesi-Maesano, I.; Alahmad, B.; Maesano, C.N.; Bind, M.A. The impact of outdoor air pollution on COVID-19: A review of evidence from in vitro, animal, and human studies. Eur. Respir. Rev. 2021, 30, 200242. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, U.; Azhar, A.; Qayyum, F.; Nawaz, H.; Tariq, S. Air pollution and hospitalization in megacities. Empirical evidence from Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 51384–51390. [Google Scholar] [CrossRef] [PubMed]
- Fidaev, D.T.; Khunarov, A.M.; Kuchkarova, N.X. Air pollution and its consequences for human health. Acad. Res. Educ. Sci. 2021, 2, 1–4. [Google Scholar]
- Luo, Y.L.; Shen, J.; Chen, A.F.; Tao, Q.; Li, Q.Q.; White, P.J. Loss of organic carbon in suburban soil upon urbanization of Chengdu megacity, China. Sci. Total Environ. 2021, 634, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.B.; Zheng, H.F.; He, X.Y.; Zhang, D.; Shen, G.Q.; Zhai, C. Changes in spatio-temporal patterns of urban forest and its above-ground carbon storage: Implication for urban CO2 emissions mitigation under China’s rapid urban expansion and greening. Environ. Int. 2019, 129, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.K.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Zhao, S.P.; Yin, D.Y.; Yu, Y.; Kang, S.C.; Qin, D.H.; Dong, L.X. PM2.5 and O3 pollution during 2015-2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts. Environ. Pollut. 2020, 264, 114694. [Google Scholar] [CrossRef]
- Nasir, A.H.; Nawaz, R.; Haider, R.; Irshad, M.A. Modeling Air Pollution Health Risk for Environmental Management of an Internationally Important Site: The Salt Range (Kallar Kahar), Pakistan. Atmosphere 2022, 13, 100. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Skowera, B.; Zbigniew, Z.; Alicja, B. Temporal Variability of Tropospheric Ozone Pollution in the Agricultural Region of Central-Eastern Poland. Sustainability 2020, 12, 1–20. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Bleyer, A. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017. A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Atkinson, R.W.; Butland, B.K.; Dimitroulopoulou, C.; Heal, M.R.; Stedman, J.R.; Carslaw, N.; Anderson, H.R. Long-term exposure to ambient ozone and mortality. Br. Med. J. 2016, 6, 1–11. [Google Scholar]
- Drozd, G.T.; Weber, R.J.; Goldstein, A.H. Highly resolved composition during diesel evaporation with modeled ozone and secondary aerosol formation: Insights into pollutant formation from evaporative intermediate volatility organic compound sources. Environ. Sci. Technol. 2021, 55, 5742–5751. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Z.; Zhao, Y.; Xu, X. Investigation of dust exposure and control practices in the construction industry: Implications for cleaner production. J. Clean. Prod. 2019, 227, 810–824. [Google Scholar] [CrossRef]
- Ndayisenga, J.D.D. Seasonal Variability of Ambient Ozone over Nyarugenge District in Kigali City. Ph.D. Thesis, University of Rwanda, Kigali, Rwanda, 2022. Available online: http://hdl.handle.net/123456789/1636 (accessed on 1 January 2020).
- Amoatey, P.; Takdastan, A.; Sicard, P.; Hopke, P.K.; Baawain, M.; Omidvarborna, H.; Khanaibadi, Y.O. Short and long-term impacts of ambient ozone on health in Ahvaz, Iran. Human and Ecological Risk Assessment. Human and Ecological Risk Assessment. Int. J. 2019, 25, 1336–1351. [Google Scholar]
- Al-Zaboon, K.K. Indoor air pollution due to household use of olive cake as a source of energy. Int. J. Environ. Waste Man 2017, 19, 248–267. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.C. Indoor air pollution related human diseases and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.; Vinals, M.; Pablos, A.; Vilás, F.; Papadakos, P.J.; Wijeysundera, D.N.; Vives, M. Ozone therapy for patients with COVID-19 pneumonia: Preliminary report of a prospective case-control study. Int. Immunopharmacol. 2021, 90, 107261. [Google Scholar] [CrossRef]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon monoxide poisoning—A public health perspective. J. Toxicol. 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Quarmby, S.; Georgina, S.; Megan, M. Air Quality Strategies and Technologies: A Rapid Review of the International Evidence. Sustainability 2019, 11, 2757. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.B.; Shukla, D.; Pradhan, N.S.; Dhungana, S.; Azizi, F.; Memon, N.; Huggel, C. Developing a science-based policy network over the Upper Indus Basin. Sci. Total Environ. 2021, 784, 147067. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Chen, Z.; Zhou, L.F.; Huang, S.X. Air pollutants and early origins of respiratory diseases. Chronic Dis. 2018, 4, 75–94. [Google Scholar] [CrossRef]
- Yates, S.; Saint-Charles, J.; Kedote, M.N.; Assogba, S.C. GReducing Air Pollution in West Africa Through Participatory Activities: Issues, Challenges, and Conditions for Citizens’ Genuine Engagement. In Handbook of Communication for Development and Social Change; Springer: Singapore, 2020; pp. 1213–1229. [Google Scholar]
- Pant, A.; Sharma, S.; Joshi, R.C. Air quality modeling for effective environmental management in Uttarakhand, India: A comparison of logistic regression and naive bayes. J. Air Pollut. Health 2022, 7, 287–298. [Google Scholar] [CrossRef]
- Jehan, S.; Khattak, S.A.; Muhammad, S.; Ali, L.; Rashid, A.; Hussain, M.L. Human health risks by potentially toxic metals in drinking water along the Hattar Industrial Estate, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 2677–2690. [Google Scholar] [CrossRef] [PubMed]
- Kenny, E.; Samavat, H.; Touger-Decker, R.; Parrott, J.S.; Byham-Gray, L.; August, D.A. Adverse perioperative outcomes among patients undergoing gastrointestinal cancer surgery: Quantifying attributable risk from malnutrition. J. Parenter Enter. Nutr. 2022, 46, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, L.A.; Gultekingil, A.; Kesici, S.; Bayrakci, B.; Teksam, O. Predictors of severe clinical course in children with carbon monoxide poisoning. Pediatr. Emerg. Care 2021, 37, 308–311. [Google Scholar]
- Marvel, S.W.; House, J.S.; Wheeler, M.; Song, K.; Zhou, Y.H.; Wright, F.A.; Reif, D.M. The COVID-19 Pandemic Vulnerability Index (PVI) Dashboard: Monitoring county-level vulnerability using visualization, statistical modeling, and machine learning. Environ. Health Perspect. 2021, 129, 017701. [Google Scholar] [CrossRef]
- Omidi Khaniabadi, Y.; Sicard, P.; Omidi Khaniabadi, A.; Mohammadinejad, S.; Keishams, F.; Takdastan, A.; Daryanoosh, M. Air quality modeling for health risk assessment of ambient PM10, PM2.5 and SO2 in Iran. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1298–1310. [Google Scholar] [CrossRef]
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2016, 21, 1–11. [Google Scholar]
- Munir, R.; Khayyam, U. China-Pakistan economic Corridor and the Impact of Coal-based energy Projects on tropospheric ozone in Pakistan. Pol. J. Environ. Stud. 2020, 29, 3729–3747. [Google Scholar] [CrossRef]
- Khan, W.A.; Shah, S.A.; Khan, A. In Pakistan, the Transport and Urban Air Pollution Impacts on Human Health and Practical Steps to Avoid Them. A Review. J. Int. Cooperation Dev. 2022, 5, 20. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Pang, X.; Shi, K.; Chen, J.; Wang, J.; Xu, M. Impact of COVID-19 Lockdown on Air Pollutants in a Coastal area of the Yangtze River Delta: China. Measured by Low-Cost Sensor Package. Atmosphere 2021, 12, 345. [Google Scholar] [CrossRef]
- Kaur, R.; Pandey, P. Air pollution, climate change, and human health in Indian Cities: A brief review. Front. Sustain. Cities 2021, 3, 705131. [Google Scholar] [CrossRef]
- Raza, W.; Saeed, S.; Saulat, H.; Gul, H.; Sarfraz, M.; Sonne, C.; Kim, K.H. A review on the deteriorating situation of smog and its preventive measures in Pakistan. J. Clean. Prod. 2021, 279, 123676. [Google Scholar] [CrossRef]
- Filippelli, G.M.; Freeman, J.L.; Gibson, J.; Jay, S.; Moreno-Madrinan, M.J.; Ogashawara, I. Climate change impacts on human health at an actionable scale. A state-level assessment of Indiana, USA. Clim. Chang. 2020, 163, 1985–2004. [Google Scholar] [CrossRef]
- Hanninen, O.; Lehtomaki, H.; Korhonen, A.; Rumrich, I.; Asikainen, A. Characterizing the health risks attributable to tropospheric ozone in Finland. JSM Environ. Sci. Ecol. 2016, 4, 1023–1029. [Google Scholar]
- Guo, W.; Yang, Y.; Chen, Q.; Zhu, Y.; Zhang, Y.; Zhang, Y.; She, J. Chemical reactivity of volatile organic compounds and their effects on ozone formation in a petrochemical industrial area of Lanzhou, Western China. Sci. Total Environ. 2022, 839, 155901. [Google Scholar] [CrossRef]
- Janarthanan, R.; Partheeban, P.; Somasundaram, K.; Elamparithi, P.N. A deep learning approach for prediction of air quality index in a metropolitan city. Sustain. Cities Soc. 2021, 67, 102720. [Google Scholar] [CrossRef]
- Jiang, Y.; Xing, J.; Wang, S.; Chang, X.; Liu, S.; Shi, A.; Sahu, S.K. Understand the local and regional contributions on air pollution from the view of human health impacts. Front. Environ. Sci. Eng. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Zhang, T.; Qiu, Y.; Ma, P.; Li, L.; Zhao, W. Analysis of the Characteristics of Ozone Pollution in the North China Plain from 2016 to 2020. Atmosphere 2022, 13, 715. [Google Scholar] [CrossRef]
- Arjomandi, M.; Balmes, J.R.; Frampton, M.W.; Bromberg, P.; Rich, D.Q.; Stark, P.; Hazucha, M.J. Respiratory responses to ozone exposure. Moses (the multicenter ozone study in older subjects). Am. J. Respir. Crit. Care Med. 2018, 197, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.L.; De Foy, B.; Thompson, A.M.; Peterson, D.A.; Hyer, E.J.; Graves, C.; Fishman, J.; Morris, G.A. Evaluation of Stratospheric Intrusions and Biomass Burning Plumes on the Vertical Distribution of Tropospheric Ozone over the Midwestern United States. J. Geophys. Res. Atmos. 2020, 125, e2020JD032454. [Google Scholar] [CrossRef]
- Elena, B.; Moiseenko, K.; Skorokhod, A.; Pankratova, N.V.; Belikov, I.; Belousov, V.; Elansky, N.F. Impact of VOCs and NOx on Ozone Formation in Moscow. Atmosphere 2020, 11, 1262. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.; Boersma, K.F.; De Smedt, I.; Valin, L. Inferring Changes in Summertime Surface Ozone–NOx–VOC. Chemistry over U.S. Urban Areas from Two 48.Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef]
- U.S. Census Bureau. American Community Survey 5-Year Estimates Data Profiles. 2019. Available online: https://data.census.gov/cedsci/table?tid=ACSDP5Y2019.DP05&g=310XX00US35620 (accessed on 10 December 2021).
- Ninneman, M.; Jaffe, D. Observed Relationship between Ozone and Temperature for Urban Nonattainment Areas in the United States. Atmosphere 2021, 12, 1235. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, Z.Y. Space-borne air pollution observation from sentinel-5p tropomi: Relationship between pollutants, geographical and demographic data. Int. J. Eng. Geosci. 2020, 5, 130–137. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Li, H.; Chen, L.; Dang, R.; Xue, D.; Liao, H. North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures. Atmos. Chem. Phys. 2022, 22, 4705–4719. [Google Scholar] [CrossRef]
Formula Used | ||
---|---|---|
Respiratory Diseases | Eye Diseases | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadoon, S.; Nawazish, S.; Majeed, Z.; Baig, A.; Bukhari, S.M.; Faiz, A.u.H.; Ghanim, A.A.J.; Irfan, M.; Rahman, S.; Ullah, F. Health Impacts of Surface Ozone in Outdoor and Indoor Environments of Hattar Industrial Units, KPK, Pakistan. Atmosphere 2022, 13, 2002. https://doi.org/10.3390/atmos13122002
Jadoon S, Nawazish S, Majeed Z, Baig A, Bukhari SM, Faiz AuH, Ghanim AAJ, Irfan M, Rahman S, Ullah F. Health Impacts of Surface Ozone in Outdoor and Indoor Environments of Hattar Industrial Units, KPK, Pakistan. Atmosphere. 2022; 13(12):2002. https://doi.org/10.3390/atmos13122002
Chicago/Turabian StyleJadoon, Suneela, Shamyla Nawazish, Zahid Majeed, Ayesha Baig, Syed Majid Bukhari, Abu ul Hassan Faiz, Abdulnoor A. J. Ghanim, Muhammad Irfan, Saifur Rahman, and Farid Ullah. 2022. "Health Impacts of Surface Ozone in Outdoor and Indoor Environments of Hattar Industrial Units, KPK, Pakistan" Atmosphere 13, no. 12: 2002. https://doi.org/10.3390/atmos13122002
APA StyleJadoon, S., Nawazish, S., Majeed, Z., Baig, A., Bukhari, S. M., Faiz, A. u. H., Ghanim, A. A. J., Irfan, M., Rahman, S., & Ullah, F. (2022). Health Impacts of Surface Ozone in Outdoor and Indoor Environments of Hattar Industrial Units, KPK, Pakistan. Atmosphere, 13(12), 2002. https://doi.org/10.3390/atmos13122002