A Deep Learning Model and Its Application to Predict the Monthly MCI Drought Index in the Yunnan Province of China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site
2.2. Data Collection and Processing
2.3. Methods
2.3.1. Pearson Analysis of Potential Predictors
2.3.2. The Development and Application of GRU–CNN
2.4. Model Building and Experiments
2.5. Evaluation Metrics
3. Results
4. Discussion and Conclusions
The Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Tian, J.; Song, H.; Ma, P. Harm of agrometeorological disasters to agriculture and defense strategies. Nanfang Agric. Mach. 2019, 50, 76. (In Chinese) [Google Scholar]
- Hammer, G.L.; Hansen, J.W.; Phillips, J.G.; Mjelde, J.W.; Hill, H.; Love, A.; Potgieter, A. Advances in application of climate prediction in agriculture. Agric. Syst. 2001, 70, 515–553. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Cheng, Q.; Gao, L.; Zhong, F.; Zuo, X.; Ma, M. Spatiotemporal variations of drought in the Yunnan–Guizhou Plateau, southwest China, during 1960–2013 and their association with large-scale circulations and historical records. Ecol. Indic. 2020, 112, 106041. [Google Scholar] [CrossRef]
- Wang, M. Research Progress on drought in Yunnan, China. Heilongjiang Agric. Sci. 2017, 122–124. [Google Scholar] [CrossRef]
- Ma, X.; Bai, S.; Huang, Y. Analysis on Drought Characteristics and drought resistance Countermeasures in Yunnan. China Rural. Water Conserv. Hydropower 2012, 101–104. (In Chinese) [Google Scholar]
- Mariotti, A.; Schubert, S.; Mo, K.; Peters-Lidard, C.; Wood, A.; Pulwarty, R.; Huang, J.; Barrie, D. Advancing drought undestangding, monitoring, and prediction. Bull. Am. Meteorol. Soc. 2013, 94, 186–188. [Google Scholar] [CrossRef]
- Kollár, A. Betting Models Using AI: A Review on ANN, SVM, and Markov Chain; MPRA Paper No. 106821; Munich Personal RePEc Archive: Munich, Germany, 2021. [Google Scholar]
- Paulo, A.A.; Pereira, L.S. Prediction of SPI drought class transitions using markov chains. Water Resour. Manag. 2007, 21, 1813–1827. [Google Scholar] [CrossRef]
- Avilés, A.; Célleri, R.; Solera, A.; Paredes, J. Probabilistic forecasting of drought events using markov chain-and bayesian network-based models: A case study of an andean regulated river basin. Water 2016, 8, 37. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, P.; Han, P.; Zhu, D.; Zhang, S. Research on Drought Prediction of standardized precipitation index based on Weighted Markov model. Agric. Res. Arid. Areas 2007, 25, 198–203. (In Chinese) [Google Scholar]
- Pongracz, R.; Bogardi, I.; Duckstein, L. Application of fuzzy rule-based modeling technique to regional drought. J. Hydrol. 1999, 224, 100–114. [Google Scholar] [CrossRef]
- Abdourahamane, Z.S.; Acar, R. Fuzzy rule-based forecast of meteorological drought in western Niger. Theor. Appl. Climatol. 2019, 135, 157–168. [Google Scholar] [CrossRef]
- Bardossy, A.; Bogardi, I.; Matyasovszky, I. Fuzzy rule-based downscaling of precipitation. Appl Clim. 2005, 82, 119–129. [Google Scholar] [CrossRef]
- Kinney, W.R., Jr. ARIMA and Regression in Analytical Review: An Empirical Test. Account. Rev. 1978, 53, 48–60. Available online: https://www.jstor.org/stable/245725 (accessed on 20 May 2022).
- Yeh, H.F.; Hsu, H.L. Stochastic Model for Drought Forecasting in the Southern Taiwan Basin. Water 2019, 11, 2041. [Google Scholar] [CrossRef] [Green Version]
- Myronidis, D.; Ioannou, K.; Fotakis, D.; Dorflinger, G. Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus. Water Resour. Manag. 2018, 32, 1759–1776. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dyn. Meteorol. Oceanogr. 2010, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liao, M. Spatio-Temporal and Spatial Prediction of Rainfall in Semi-Arid Area Based on Deep Learning. Master’s Thesis, Lanzhou University, Lanzhou, China, 2021. (In Chinese). [Google Scholar]
- Liu, X.; Song, W.; Qian, F.; Wang, L.; Feng, L.; Xie, W. Meteorological drought prediction method based on vmd-cqpso-gru model. J. N. China Univ. Water Resour. Hydropower 2021, 42, 31–40. (In Chinese) [Google Scholar]
- Mi, Q.; Cao, X.; Li, Y.; Li, X.; Tang, Y.; Ren, C. Application of deep learning method to drought prediction. J. Appl. Meterogolitical Sci. 2022, 33, 104–114. [Google Scholar]
- Zhang, Q.; Xie, W.; Chen, X.; Zhai, P.; Wu, B.; Duan, J. Regional drought process and its variation characteristics in the middle-lower reaches of the Yangtze River from 1961 to 2019. Acta Meteorol. Sin. 2021, 79, 570–581. [Google Scholar]
- Cleophas, T.J.; Zwinderman, A.H. Bayesian Pearson correlation analysis. In Modern Bayesian Statistics in Clinical Research; Springer: Cham, Switzerland, 2018; pp. 111–118. [Google Scholar]
- Altman, E.I. Predicting financial distress of companies: Revisiting the Z-score and ZETA models. In Handbook of Research Methods and Applications in Empirical Finance; Bell, A.R., Brooks, C., Prokopczuk, M., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2013. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Du, R. Design of Stock Trading Strategy Based on Gru Improved LSTM Gate Controlled Short-Term Memory Network. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2020. (In Chinese). [Google Scholar]
- Cahuantzi, R.; Chen, X.; Güttel, S. A comparison of LSTM and GRU networks for learning symbolic sequences. arXiv 2021, arXiv:2107.02248. [Google Scholar]
- Indolia, S.; Goswami, A.K.; Mishra, S.P.; Asopa, P. Conceptual understanding of convolutional neural network- A feep learning approach. Procedia Comput. Sci. 2018, 132, 679–688. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. Optimization and Implementation of CNN Image Recognition Algorithm Based on Zynq. Master’s Thesis, Nanjing University of Posts and Telecommunications, Nanjing, China, 2021. (In Chinese). [Google Scholar]
- Norouzi, H.; Bazargan, J. Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm. J. Water Clim. Change 2021, 12, 2055–2067. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO regression. J. Br. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Xu, N. Research on UAV 3D path planning based on Improved PSO algorithm. Electron. Meas. Technol. 2022, 45, 78–83. (In Chinese) [Google Scholar]
- Agana, N.A.; Homaifar, A. A deep learning based approach for long-term drought prediction. In Proceedings of the SoutheastCon 2017, Concord, NC, USA, 30 March–2 April 2017; pp. 1–8. [Google Scholar]
- Özger, M.; Mishra, A.K.; Singh, V.P. Long lead time drought forecasting using a wavelet and fuzzy logic combination model: A case study in Texas. J. Hydrometeorol. 2012, 13, 284–297. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kwon, H.-H.; Lee, J.-H.; Kim, T.W. Probabilistic long-term hydrological drought forecast using Bayesian networks and drought propagation. Meteorol. Appl. 2020, 27, e1827. [Google Scholar] [CrossRef]
Level | Category | MCI |
---|---|---|
1 | No | (−0.5, +∞) |
2 | Light | (−1.0, −0.5] |
3 | Moderate | (−1.5, −1.0] |
4 | Severe | (−2.0, −1.5] |
5 | Severest | (−∞, −2.0] |
Predictors | Ground Pressure (hPa) | 2 m Air Temperature (°C) | Precipitation (mm) | Surface Temperature (°C) | Relative Humidity (%) | 10 m Wind Speed (m/s) | Peak Sunshine Hours (h) |
---|---|---|---|---|---|---|---|
Pearson Correlation Coefficient | 0.014 | 0.074 | 0.426 | 0.02 | 0.515 | −0.454 | −0.362 |
Sig.(2-tailed) | 0.705 | 0.044 | 0 | 0.585 | 0 | 0 | 0 |
Predictors | Evaporation (mm) | Runoff (mm) | TT (K) | Convective Available Potential Energy (J/kg) | Sea Level Pressure (hPa) | Surface Runoff (mm) | Subsurface Runoff (mm) |
Pearson Correlation Coefficient | −0.345 | 0.532 | 0.096 | 0.348 | −0.011 | 0.448 | 0.456 |
Sig.(2-tailed) | 0 | 0 | 0.009 | 0 | 0.767 | 0 | 0 |
Setting Parameters | Value |
---|---|
Particle swarm size | 60 |
Model learning rate | 0.001 |
Number of model iterations | 150 |
Number of GRU hidden nodes | 84 |
Number of CNN convolutional kernels | 25 |
CNN convolutional kernel size | 7 |
Batch size | 128 |
Activation function | ReLU |
Loss function and fitness function | MAE |
Regular optimization | 0.1 |
PSO maximum number of iterations | 50 |
LASSO | RF | ||
---|---|---|---|
Setting parameters | Value | Setting parameters | Value |
alpha | 0.1 | n_estimators | 80 |
max_iter | None | criterion | Gini |
tol | 0.0001 | max_depth | 50 |
selection | cyclic | splitter | best |
Models | Stations | Kunming | Lincang | Lijiang | Guangnan | Qujing | Average | |
---|---|---|---|---|---|---|---|---|
Metrics | ||||||||
LASSO | MAE | 2.04 | 1.757 | 1.484 | 1.888 | 1.714 | 1.777 | |
RMSE | 2.745 | 2.361 | 2.039 | 2.645 | 2.294 | 2.417 | ||
NSE | 0.879 | 0.909 | 0.946 | 0.879 | 0.928 | 0.908 | ||
RF | MAE | 1.195 | 0.964 | 0.822 | 1.141 | 1.042 | 1.033 | |
RMSE | 1.654 | 1.341 | 1.147 | 1.645 | 1.389 | 1.435 | ||
NSE | 0.963 | 0.975 | 0.984 | 0.961 | 0.977 | 0.972 | ||
GRU | MAE | 0.545 | 0.474 | 0.486 | 0.503 | 0.351 | 0.472 | |
RMSE | 0.736 | 0.625 | 0.662 | 0.653 | 0.479 | 0.631 | ||
NSE | 0.993 | 0.996 | 0.995 | 0.995 | 0.997 | 0.995 | ||
GRU–CNN | MAE | 0.307 | 0.268 | 0.147 | 0.239 | 0.226 | 0.237 | |
RMSE | 0.385 | 0.344 | 0.191 | 0.298 | 0.287 | 0.301 | ||
NSE | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 |
Models | Stations | Kunming | Lincang | Lijiang | Guangnan | Qujing | Average | |
---|---|---|---|---|---|---|---|---|
Metrics | ||||||||
LASSO | MAE | 2.169 | 1.956 | 1.851 | 2.106 | 2.095 | 2.035 | |
RMSE | 2.963 | 2.624 | 2.387 | 2.889 | 2.787 | 2.73 | ||
NSE | 0.847 | 0.877 | 0.916 | 0.838 | 0.877 | 0.871 | ||
RF | MAE | 1.466 | 1.25 | 1.044 | 1.365 | 1.303 | 1.285 | |
RMSE | 2.05 | 1.682 | 1.344 | 1.902 | 1.749 | 1.745 | ||
NSE | 0.939 | 0.957 | 0.977 | 0.943 | 0.959 | 0.955 | ||
GRU | MAE | 0.626 | 0.513 | 0.517 | 0.659 | 0.397 | 0.542 | |
RMSE | 0.801 | 0.764 | 0.738 | 0.847 | 0.512 | 0.732 | ||
NSE | 0.992 | 0.994 | 0.994 | 0.991 | 0.997 | 0.994 | ||
GRU–CNN | MAE | 0.355 | 0.296 | 0.156 | 0.261 | 0.265 | 0.267 | |
RMSE | 0.443 | 0.385 | 0.201 | 0.335 | 0.324 | 0.338 | ||
NSE | 0.997 | 0.999 | 0.999 | 0.998 | 0.999 | 0.998 |
Models | Stations | Kunming | Lincang | Lijiang | Guangnan | Qujing | Average | |
---|---|---|---|---|---|---|---|---|
Metrics | ||||||||
LASSO | MAE | 2.472 | 2.11 | 2.071 | 2.189 | 2.307 | 2.229 | |
RMSE | 3.241 | 2.7 | 2.598 | 3.021 | 2.956 | 2.903 | ||
NSE | 0.797 | 0.867 | 0.897 | 0.817 | 0.855 | 0.847 | ||
RF | MAE | 1.587 | 1.176 | 1.337 | 1.445 | 1.417 | 1.392 | |
RMSE | 2.111 | 1.556 | 1.725 | 1.944 | 1.887 | 1.845 | ||
NSE | 0.932 | 0.964 | 0.96 | 0.94 | 0.951 | 0.949 | ||
GRU | MAE | 0.799 | 0.649 | 0.497 | 0.681 | 0.448 | 0.615 | |
RMSE | 1.033 | 0.997 | 0.759 | 0.884 | 0.584 | 0.851 | ||
NSE | 0.986 | 0.991 | 0.992 | 0.99 | 0.996 | 0.991 | ||
GRU–CNN | MAE | 0.415 | 0.337 | 0.161 | 0.291 | 0.332 | 0.307 | |
RMSE | 0.531 | 0.519 | 0.218 | 0.373 | 0.434 | 0.415 | ||
NSE | 0.997 | 0.998 | 0.999 | 0.998 | 0.998 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, P.; Liu, J.; Liu, C.; Liu, J. A Deep Learning Model and Its Application to Predict the Monthly MCI Drought Index in the Yunnan Province of China. Atmosphere 2022, 13, 1951. https://doi.org/10.3390/atmos13121951
Mei P, Liu J, Liu C, Liu J. A Deep Learning Model and Its Application to Predict the Monthly MCI Drought Index in the Yunnan Province of China. Atmosphere. 2022; 13(12):1951. https://doi.org/10.3390/atmos13121951
Chicago/Turabian StyleMei, Ping, Jiahui Liu, Changzheng Liu, and Jiannan Liu. 2022. "A Deep Learning Model and Its Application to Predict the Monthly MCI Drought Index in the Yunnan Province of China" Atmosphere 13, no. 12: 1951. https://doi.org/10.3390/atmos13121951
APA StyleMei, P., Liu, J., Liu, C., & Liu, J. (2022). A Deep Learning Model and Its Application to Predict the Monthly MCI Drought Index in the Yunnan Province of China. Atmosphere, 13(12), 1951. https://doi.org/10.3390/atmos13121951