Thoughts about the Thermal Environment and the Development of Human Civilisation
Abstract
:1. A Short Introduction about the Impact of Climate and Weather on Human Life
2. The Thread of Thermal Perception in Human History and Civilisation
2.1. Buildings and Built Environment
2.2. Energy Requirements
2.3. Clothing
2.4. Language
2.5. From Social Life to Philosophy
2.6. Mythology and Religions
2.6.1. Ancient Greek and Roman Mythology and Tradition
2.6.2. Ancient Egyptian Mythology and Tradition
2.6.3. Northern Europe Ancient Mythology and Traditions
2.6.4. Islamic Religion and Tradition
2.6.5. Jewish and Christianic Religion and Tradition
3. Concluding Remarks
- -
- They largely determined the configuration of the outdoor and built spaces of humankind’s residential environment.
- -
- They have influenced and continue to control much of the amount of energy consumed by humankind, thus significantly affecting the economic model of our civilisation in every era.
- -
- They play an important role in the type of clothing since its inception as it is a fundamental tool for regulating the human body’s temperature.
- -
- They play a vital role in shaping human language and its sound according to prevalent climatic conditions.
- -
- They helped in the development of human socialisation and the development of democracy and philosophy.
- -
- They are at the core of the narrative of many religious beliefs and traditions, symbolising eternal punishment through Hell and reward through Heaven.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, R. Climate and Man. Bull. Am. Geogr. Soc. 1907, 39, 735–738. [Google Scholar] [CrossRef]
- Olmstead, A.T. Climate and History. J. Geogr. 1912, 10, 163–168. [Google Scholar] [CrossRef]
- Böhme, G. Atmosphere. Online Encycl. Philos. Nat. 2021. [Google Scholar] [CrossRef]
- Ward, P. Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere; Joseph Henry Press: Washington, DC, USA, 2006; ISBN 978-0-30910-061-8. [Google Scholar]
- Böhme, G.; Thibaud, J.-P. The Aesthetics of Atmospheres; Routledge: London, UK, 2016; ISBN 978-1-13868-850-6. [Google Scholar]
- Pfister, D. The Concept of Atmosphere from a Multidisciplinary Perspective. In Atmospheric Turn in Culture and Tourism: Place, Design and Process Impacts on Customer Behaviour, Marketing and Branding; Volgger, M., Pfister, D., Eds.; Advances in Culture, Tourism and Hospitality Research; Emerald Publishing Limited: Bingley, UK, 2019; Volume 16, pp. 31–43. ISBN 978-1-83867-070-2. [Google Scholar]
- Bonacina, L.C.W. Landscape Meteorology and Its Reflection in Art and Literature. Q. J. R. Meteorol. Soc. 1939, 65, 485–498. [Google Scholar] [CrossRef]
- Neuberger, H. Climate in Art. Weather 1970, 25, 46–56. [Google Scholar] [CrossRef]
- Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, W.; Liu, K.; Chen, Q. A Comprehensive Review of Thermal Comfort Studies in Urban Open Spaces. Sci. Total Environ. 2020, 742, 140092. [Google Scholar] [CrossRef]
- Givoni, B. Comfort, Climate Analysis and Building Design Guidelines. Energy Build. 1992, 18, 11–23. [Google Scholar] [CrossRef]
- Lamb, H. Climate, History and the Modern World; Routledge: New York, NY, USA, 1997. [Google Scholar]
- Donaldson, G.C.; Rintamäki, H.; Näyhä, S. Outdoor Clothing: Its Relationship to Geography, Climate, Behaviour and Cold-Related Mortality in Europe. Int. J. Biometeorol. 2001, 45, 45–51. [Google Scholar] [CrossRef]
- Tamura, T. Climate and Clothing. J. Hum.-Environ. Syst. 2016, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huntington, E. Mainsprings of Civilization; Wiley: Hoboken, NJ, USA, 1945. [Google Scholar]
- Doxiadis, C.A. Man’s Movement and His Settlements? Int. J. Environ. Stud. 1970, 1, 19–30. [Google Scholar] [CrossRef]
- Ingram, M.J.; Underhill, D.J.; Wigley, T.M.L. Historical Climatology. Nature 1978, 276, 329–334. [Google Scholar] [CrossRef]
- Hippocrates On Airs, Waters and Places; Dodo Press: Moscow, Russia, 2009; ISBN 978-1-40994-959-6.
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance, 3rd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2002; ISBN 1-46-659599-X. [Google Scholar]
- McGregor, G.R. Human Biometeorology. Prog. Phys. Geogr. Earth Environ. 2012, 36, 93–109. [Google Scholar] [CrossRef]
- Bouma, J.J.S.H.J.W. A Short History of Human Biometeorology. Experientia 1987, 43, 2–6. [Google Scholar] [CrossRef]
- Winslow, C.-E.A.; Herrington, L.P.; Gagge, A.P. Physiological Reactions of the Human Body to Varying Environmental Temperatures. Am. J. Physiol. Leg. Content 1937, 120, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gagge, A.P.; Stolwijk, J.A.J.; Hardy, J.D. Comfort and Thermal Sensations and Associated Physiological Responses at Various Ambient Temperatures. Environ. Res. 1967, 1, 1–20. [Google Scholar] [CrossRef]
- Auliciems, A. Towards a Psycho-Physiological Model of Thermal Perception. Int. J. Biometeorol. 1981, 25, 109–122. [Google Scholar] [CrossRef]
- Djongyang, N.; Tchinda, R.; Njomo, D. Thermal Comfort: A Review Paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [Google Scholar] [CrossRef]
- Cena, K.; Clark, J.A. Bioengineering, Thermal Physiology and Comfort; Elsevier: Amsterdam, The Netherlands, 1981; Volume 10, ISBN 0-08-087469-X. [Google Scholar]
- Griffiths, I.D.; Boyce, P.R. Performance and Thermal Comfort. Ergonomics 1971, 14, 457–468. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor Human Thermal Perception in Various Climates: A Comprehensive Review of Approaches, Methods and Quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A Comprehensive Catalogue and Classification of Human Thermal Climate Indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- Charalampopoulos, I. The R Language as a Tool for Biometeorological Research. Atmosphere 2020, 11, 682. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a Universal Thermal Index: Physiological Equivalent Temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.S.; Charalampopoulos, I.; Matzarakis, A. Beyond Singular Climatic Variables—Identifying the Dynamics of Wholesome Thermo-Physiological Factors for Existing/Future Human Thermal Comfort during Hot Dry Mediterranean Summers. Int. J. Environ. Res. Public Health 2018, 15, 2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charalampopoulos, I. A Comparative Sensitivity Analysis of Human Thermal Comfort Indices with Generalized Additive Models. Theor. Appl. Clim. 2019, 137, 1605–1622. [Google Scholar] [CrossRef]
- Zafarmandi, S.; Mahdavinejad, M.; Norford, L.; Matzarakis, A. Analyzing Thermal Comfort Sensations in Semi-Outdoor Space on a University Campus: On-Site Measurements in Tehran’s Hot and Cold Seasons. Atmosphere 2022, 13, 1034. [Google Scholar] [CrossRef]
- Paramita, B.; Kusuma, H.E.; Matzarakis, A. Urban Performance Based on Biometeorology Index in High-Density, Hot, and Humid Cities. Sustain. Cities Soc. 2022, 80, 103767. [Google Scholar] [CrossRef]
- Nouri, A.S.; Charalampopoulos, I.; Matzarakis, A. The Application of the Physiologically Equivalent Temperature to Determine Impacts of Locally Defined Extreme Heat Events within Vulnerable Dwellings during the 2020 Summer in Ankara: Abstract. Sustain. Cities Soc. 2022, 81, 103833. [Google Scholar] [CrossRef]
- Matzarakis, A.; Graw, K. Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere 2022, 13, 269. [Google Scholar] [CrossRef]
- Krüger, E.L. Literature Review on UTCI Applications. In Applications of the Universal Thermal Climate Index UTCI in Biometeorology: Latest Developments and Case Studies; Krüger, E.L., Ed.; Biometeorology; Springer International Publishing: Cham, Switzerland, 2021; pp. 23–65. ISBN 978-3-03076-716-7. [Google Scholar]
- Aplin, K.L.; Williams, P.D. Meteorological Phenomena in Western Classical Orchestral Music. Weather 2011, 66, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Aplin, K.L.; Jenkins, K.; Mander, S.; Walsh, C.; Williams, P.D. Is There a Rhythm of The Rain? An Analysis of Weather in Popular Music. Weather 2015, 70, 198–204. [Google Scholar] [CrossRef]
- deMenocal, P.B. Cultural Responses to Climate Change During the Late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef]
- Thornes, J.E. Cultural Climatology and the Representation of Sky, Atmosphere, Weather and Climate in Selected Art Works of Constable, Monet and Eliasson. Geoforum 2008, 39, 570–580. [Google Scholar] [CrossRef]
- Minor, K.; Bjerre-Nielsen, A.; Jonasdottir, S.S.; Lehmann, S.; Obradovich, N. Rising Temperatures Erode Human Sleep Globally. One Earth 2022, 5, 534–549. [Google Scholar] [CrossRef]
- Lai, W.; Li, S.; Liu, Y.; Barwick, P.J. Adaptation Mitigates the Negative Effect of Temperature Shocks on Household Consumption. Nat. Hum. Behav. 2022, 6, 837–846. [Google Scholar] [CrossRef]
- Trentinaglia, M.T.; Parolini, M.; Donzelli, F.; Olper, A. Climate Change and Obesity: A Global Analysis. Glob. Food Secur. 2021, 29, 100539. [Google Scholar] [CrossRef]
- de Lima, C.Z.; Buzan, J.R.; Moore, F.C.; Baldos, U.L.C.; Huber, M.; Hertel, T.W. Heat Stress on Agricultural Workers Exacerbates Crop Impacts of Climate Change. Environ. Res. Lett. 2021, 16, 044020. [Google Scholar] [CrossRef]
- Beghin, L.; Vanhelst, J.; Drumez, E.; Migueles, J.; Manios, Y.; Moreno, L.A.; Henauw, S.D.; Gottrand, F. Influence of Meteorological Conditions on Physical Activity in Adolescents. J. Epidemiol. Community Health 2020, 74, 395–400. [Google Scholar] [CrossRef]
- Mullins, J.T.; White, C. Temperature and Mental Health: Evidence from the Spectrum of Mental Health Outcomes. J. Health Econ. 2019, 68, 102240. [Google Scholar] [CrossRef] [Green Version]
- Obradovich, N.; Migliorini, R.; Paulus, M.P.; Rahwan, I. Empirical Evidence of Mental Health Risks Posed by Climate Change. Proc. Natl. Acad. Sci. USA 2018, 115, 10953–10958. [Google Scholar] [CrossRef] [Green Version]
- Charalampopoulos, I.; Droulia, F. The Agro-Meteorological Caused Famines as an Evolutionary Factor in the Formation of Civilisation and History: Representative Cases in Europe. Climate 2021, 9, 5. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Swanson, K.L.; Sugihara, G.; Tsonis, P.A. Climate Change and the Demise of Minoan Civilization. Clim. Past 2010, 6, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Fagan, B.M. Floods, Famines, and Emperors: El Niño and the Fate of Civilizations, 2nd ed.; Basic Books: New York, NY, USA, 2009; ISBN 978-0-46500-530-7. [Google Scholar]
- Haug, G.H.; Günther, D.; Peterson, L.C.; Sigman, D.M.; Hughen, K.A.; Aeschlimann, B. Climate and the Collapse of Maya Civilization. Science 2003, 299, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Hodell, D.A.; Curtis, J.H.; Brenner, M. Possible Role of Climate in the Collapse of Classic Maya Civilization. Nature 1995, 375, 391–394. [Google Scholar] [CrossRef]
- Abate, T. Climate and the Collapse of Civilization. BioScience 1994, 44, 516–519. [Google Scholar] [CrossRef]
- Neumann, J. Great Historical Events That Were Significantly Affected by the Weather: I. the Mongol Invasions of Japan. Bull. Am. Meteorol. Soc. 1975, 56, 1167–1171. [Google Scholar] [CrossRef]
- Neumann, J.; Dettwiller, J. Great Historical Events That Were Significantly Affected by the Weather: Part 9, the Year Leading to the Revolution of 1789 in France (II). Bull. Am. Meteorol. Soc. 1990, 71, 33–41. [Google Scholar] [CrossRef]
- Lindgrén, S.; Neumann, J. Great Historical Events That Were Significantly Affected by the Weather: 5, Some Meteorological Events of the Crimean War and Their Consequences. Bull. Am. Meteor. Soc. 1980, 61, 1570–1583. [Google Scholar] [CrossRef]
- Klinger, P.J. Weather and the Jacobite Rebellion of 1719. Environ. Hist. 2017, 23, 197–216. [Google Scholar] [CrossRef]
- Grove, R.H. The Great El Niño of 1789–93 and Its Global Consequences: Reconstructing an Extreme Climate Event in World Environmental History. Mediev. Hist. J. 2006, 10, 75–98. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Çalışkan, O.; Charalampopoulos, I.; Cheval, S.; Matzarakis, A. Defining Local Extreme Heat Thresholds and Indoor Cooling Degree Necessity for Vulnerable Residential Dwellings during the 2020 Summer in Ankara—Part I: Air Temperature. Sol. Energy 2021, 242, 435–453. [Google Scholar] [CrossRef]
- Santurtún, A.; Almendra, R.; Fdez-Arroyabe, P.; Sanchez-Lorenzo, A.; Royé, D.; Zarrabeitia, M.T.; Santana, P. Predictive Value of Three Thermal Comfort Indices in Low Temperatures on Cardiovascular Morbidity in the Iberian Peninsula. Sci. Total Environ. 2020, 729, 138969. [Google Scholar] [CrossRef]
- Nouri, A.S.; Matzarakis, A. Human Biometeorological Models: Existing and Future Reflections for Lisbon. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 443–464. ISBN 978-3-03065-421-4. [Google Scholar]
- Nouri, A.S.; Lopes, A.; Costa, J.P.; Matzarakis, A. Confronting Potential Future Augmentations of the Physiologically Equivalent Temperature through Public Space Design: The Case of Rossio, Lisbon. Sustain. Cities Soc. 2018, 37, 7–25. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 Report of The Lancet Countdown on Health and Climate Change: Responding to Converging Crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Yi, W.; Zhao, Y.; Chan, A.P.C.; Lam, E.W.M. Optimal Cooling Intervention for Construction Workers in a Hot and Humid Environment. Build. Environ. 2017, 118, 91–100. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Chen, A.; Chang, V.W.-C. Human Health and Thermal Comfort of Office Workers in Singapore. Build. Environ. 2012, 58, 172–178. [Google Scholar] [CrossRef]
- Obradovich, N.; Migliorini, R. Sleep and the Human Impacts of Climate Change. Sleep Med. Rev. 2018, 42, 1–2. [Google Scholar] [CrossRef]
- Obradovich, N.; Migliorini, R.; Mednick, S.C.; Fowler, J.H. Nighttime Temperature and Human Sleep Loss in a Changing Climate. Sci. Adv. 2017, 3, e1601555. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Mayer, H. The Extreme Heat Wave in Athens in July 1987 from the Point of View of Human Biometeorology. Atmos. Environ. Part B Urban Atmos. 1991, 25, 203–211. [Google Scholar] [CrossRef]
- Buyak, N.A.; Deshko, V.I.; Sukhodub, I.O. Buildings Energy Use and Human Thermal Comfort According to Energy and Exergy Approach. Energy Build. 2017, 146, 172–181. [Google Scholar] [CrossRef]
- Yang, L.; Yan, H.; Lam, J.C. Thermal Comfort and Building Energy Consumption Implications—A Review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Halawa, E.; van Hoof, J.; Soebarto, V. The Impacts of the Thermal Radiation Field on Thermal Comfort, Energy Consumption and Control—A Critical Overview. Renew. Sustain. Energy Rev. 2014, 37, 907–918. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Santos Nouri, A. Investigating the Behaviour of Human Thermal Indices under Divergent Atmospheric Conditions: A Sensitivity Analysis Approach. Atmosphere 2019, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Labdaoui, K.; Mazouz, S.; Acidi, A.; Cools, M.; Moeinaddini, M.; Teller, J. Utilizing Thermal Comfort and Walking Facilities to Propose a Comfort Walkability Index (CWI) at the Neighbourhood Level. Build. Environ. 2021, 193, 107627. [Google Scholar] [CrossRef]
- Lin, T.-P.; Yang, S.-R.; Chen, Y.-C.; Matzarakis, A. The Potential of a Modified Physiologically Equivalent Temperature (MPET) Based on Local Thermal Comfort Perception in Hot and Humid Regions. Theor. Appl. Clim. 2019, 135, 873–876. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why Another Thermal Index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Orosa, J.A.; Oliveira, A.C. A New Thermal Comfort Approach Comparing Adaptive and PMV Models. Renew. Energy 2011, 36, 951–956. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Tsiros, I.; Chronopoulou-Sereli, A.; Matzarakis, A. A Methodology for the Evaluation of the Human-Bioclimatic Performance of Open Spaces. Theor. Appl. Clim. 2017, 128, 811–820. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments—Application of the RayMan Model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Nastos, P.T.; Vassilakis, E.; Nastos, M.-P.P.; Charalampopoulos, I.; Matzarakis, A. Assessment of Continuous Sky View Factor Based on Ultra-High Resolution Natural Colour Images Acquired by Remotely Piloted Airborne Systems for Applications in an Urban Area of Athens. Int. J. Remote Sens. 2017, 38, 5814–5829. [Google Scholar] [CrossRef]
- Nastos, P.T.; Matzarakis, A. The Effect of Air Temperature and Human Thermal Indices on Mortality in Athens, Greece. Theor. Appl. Clim. 2012, 108, 591–599. [Google Scholar] [CrossRef]
- Harari, Y.N. Sapiens: A Brief History of Humankind; Random House: New York, NY, USA, 2014; ISBN 1-84-655823-9. [Google Scholar]
- Pevsner, N. A History of Building Types; Thames and Hudson: London, UK, 1976; Volume 19, ISBN 0-50-034066-8. [Google Scholar]
- Bowen, W.M.; Gleeson, R.E. The Evolution of Human Settlements: From Pleistocene Origins to Anthropocene Prospects; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-31995-033-4. [Google Scholar]
- Day, C.; Roaf, S. Ecohouse: A Design Guide; Routledge: London, UK, 2007; ISBN 978-0-41552-677-7. [Google Scholar]
- Brown, R. Design with Microclimate. The Secret to Comfortable Outdoor Space; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Diamond, J. Guns, Germs, and Steel: The Fates of Human Societies; WW Norton & Company: New York, NY, USA, 1999; ISBN 0-39-306922-2. [Google Scholar]
- Manzano-Agugliaro, F.; Montoya, F.G.; Sabio-Ortega, A.; García-Cruz, A. Review of Bioclimatic Architecture Strategies for Achieving Thermal Comfort. Renew. Sustain. Energy Rev. 2015, 49, 736–755. [Google Scholar] [CrossRef]
- Rodríguez Algeciras, J.A.; Coch, H.; De la Paz Pérez, G.; Chaos Yeras, M.; Matzarakis, A. Human Thermal Comfort Conditions and Urban Planning in Hot-Humid Climates—The Case of Cuba. Int. J. Biometeorol. 2016, 60, 1151–1164. [Google Scholar] [CrossRef]
- Mohamed, A.S.Y.; Elmeligy, D.A.; Azmy, N.Y. Eco-Adaptive Architecture through the Bioclimatic Design in Historical Arab Regions. EQA Int. J. Environ. Qual. 2020, 39, 32–51. [Google Scholar] [CrossRef]
- Tamaskani Esfehankalateh, A.; Farrokhzad, M.; Tamaskani Esfehankalateh, F.; Soflaei, F. Bioclimatic Passive Design Strategies of Traditional Houses in Cold Climate Regions. Environ. Dev. Sustain. 2022, 24, 10027–10068. [Google Scholar] [CrossRef]
- Karjalainen, S. Thermal Comfort and Gender: A Literature Review. Indoor Air 2012, 22, 96–109. [Google Scholar] [CrossRef]
- Lin, T.-P. Thermal Perception, Adaptation and Attendance in a Public Square in Hot and Humid Regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Parsons, K.C. The Effects of Gender, Acclimation State, the Opportunity to Adjust Clothing and Physical Disability on Requirements for Thermal Comfort. Energy Build. 2002, 34, 593–599. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Nastos, P.T.; Didaskalou, E. Human Thermal Conditions and North Europeans’ Web Searching Behavior (Google Trends) on Mediterranean Touristic Destinations. Urban Sci. 2017, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill Book Company: New York, NY, USA, 1970; ISBN 978-0-07019-915-6. [Google Scholar]
- Chatzipoulka, C.; Steemers, K.; Nikolopoulou, M. Density and Coverage Values as Indicators of Thermal Diversity in Open Spaces: Comparative Analysis of London and Paris Based on Sun and Wind Shadow Maps. Cities 2020, 100, 102645. [Google Scholar] [CrossRef]
- Nouri, A.S.; Costa, J.P. Addressing Thermophysiological Thresholds and Psychological Aspects during Hot and Dry Mediterranean Summers through Public Space Design: The Case of Rossio. Build. Environ. 2017, 118, 67–90. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Matzarakis, A. Implementation of Human Thermal Comfort Information in Köppen-Geiger Climate Classification—The Example of China. Int. J. Biometeorol. 2016, 60, 1801–1805. [Google Scholar] [CrossRef] [PubMed]
- Charalampopoulos, I.; Tsiros, I.; Chronopoulou-Sereli, A.; Matzarakis, A. A Note on the Evolution of the Daily Pattern of Thermal Comfort-Related Micrometeorological Parameters in Small Urban Sites in Athens. Int. J. Biometeorol. 2014, 59, 1223–1236. [Google Scholar] [CrossRef] [PubMed]
- Kabre, C. Sustainable Greek Traditional Dwellings of Cyclades. Archit. Sci. Rev. 2016, 59, 81–90. [Google Scholar] [CrossRef]
- Nastos, P.T.; Matzarakis, A. Present and Future Climate—Tourism Conditions in Milos Island, Greece. Atmosphere 2019, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Aljawabra, F.; Nikolopoulou, M. Influence of Hot Arid Climate on the Use of Outdoor Urban Spaces and Thermal Comfort: Do Cultural and Social Backgrounds Matter? Intell. Build. Int. 2010, 2, 198–217. [Google Scholar] [CrossRef]
- Bouden, C.; Ghrab, N. An Adaptive Thermal Comfort Model for the Tunisian Context: A Field Study Results. Energy Build. 2005, 37, 952–963. [Google Scholar] [CrossRef]
- Andreou, E.; Axarli, K. Investigation of Urban Canyon Microclimate in Traditional and Contemporary Environment. Experimental Investigation and Parametric Analysis. Renew. Energy 2012, 43, 354–363. [Google Scholar] [CrossRef]
- Lindberg, F.; Thorsson, S.; Rayner, D.; Lau, K. The Impact of Urban Planning Strategies on Heat Stress in a Climate-Change Perspective. Sustain. Cities Soc. 2016, 25, 1–12. [Google Scholar] [CrossRef]
- Svensson, M.K.; Eliasson, I. Diurnal Air Temperatures in Built-up Areas in Relation to Urban Planning. Landsc. Urban Plan. 2002, 61, 37–54. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal Comfort and Psychological Adaptation as a Guide for Designing Urban Spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Yang, B.; Olofsson, T.; Nair, G.; Kabanshi, A. Outdoor Thermal Comfort under Subarctic Climate of North Sweden—A Pilot Study in Umeå. Sustain. Cities Soc. 2017, 28, 387–397. [Google Scholar] [CrossRef]
- Kim, Y.J.; Brown, R.D. A Multilevel Approach for Assessing the Effects of Microclimatic Urban Design on Pedestrian Thermal Comfort: The High Line in New York. Build. Environ. 2021, 205, 108244. [Google Scholar] [CrossRef]
- Smil, V. Energy and Civilization: A History; MIT Press: Cambridge, MA, USA, 2018; ISBN 978-0-26253-616-5. [Google Scholar]
- Issawi, C. Technology, Energy, and Civilization: Some Historical Observations. Int. J. Middle East Stud. 1991, 23, 281–289. [Google Scholar] [CrossRef]
- Albatayneh, A.; Alterman, D.; Page, A.; Moghtaderi, B. The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption. Sustainability 2018, 10, 3609. [Google Scholar] [CrossRef] [Green Version]
- Jowkar, M.; Rijal, H.B.; Montazami, A.; Brusey, J.; Temeljotov-Salaj, A. The Influence of Acclimatization, Age and Gender-Related Differences on Thermal Perception in University Buildings: Case Studies in Scotland and England. Build. Environ. 2020, 179, 106933. [Google Scholar] [CrossRef]
- Vellei, M.; Chinazzo, G.; Zitting, K.-M.; Hubbard, J. Human Thermal Perception and Time of Day: A Review. Temperature 2021, 8, 320–341. [Google Scholar] [CrossRef]
- Ross, R. Clothing: A Global History; Polity: Cambridge, UK, 2008; ISBN 978-0-74563-186-8. [Google Scholar]
- Gao, S.; Ooka, R.; Oh, W. Experimental Investigation of the Effect of Clothing Insulation on Thermal Comfort Indices. Build. Environ. 2021, 187, 107393. [Google Scholar] [CrossRef]
- Jowkar, M.; de Dear, R.; Brusey, J. Influence of Long-Term Thermal History on Thermal Comfort and Preference. Energy Build. 2020, 210, 109685. [Google Scholar] [CrossRef]
- Gautam, B.; Rijal, H.B.; Shukuya, M.; Imagawa, H. A Field Investigation on the Wintry Thermal Comfort and Clothing Adjustment of Residents in Traditional Nepalese Houses. J. Build. Eng. 2019, 26, 100886. [Google Scholar] [CrossRef]
- Sahta, I.; Baltina, I.; Blums, J.; Jurkans, V. The Control of Human Thermal Comfort by the Smart Clothing. SHS Web Conf. 2014, 10, 00040. [Google Scholar] [CrossRef] [Green Version]
- Havenith, G.; Holmér, I.; Parsons, K. Personal Factors in Thermal Comfort Assessment: Clothing Properties and Metabolic Heat Production. Energy Build. 2002, 34, 581–591. [Google Scholar] [CrossRef]
- Nölle, J.; Fusaroli, R.; Mills, G.J.; Tylén, K. Language as Shaped by the Environment: Linguistic Construal in a Collaborative Spatial Task. Palgrave Commun 2020, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Everett, C.; Blasi, D.E.; Roberts, S.G. Climate, Vocal Folds, and Tonal Languages: Connecting the Physiological and Geographic Dots. Proc. Natl. Acad. Sci. USA 2015, 112, 1322–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddieson, I. Language Adapts to Environment: Sonority and Temperature. Front. Commun. 2018, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Everett, C.; Blasí, D.E.; Roberts, S.G. Language Evolution and Climate: The Case of Desiccation and Tone. J. Lang. Evol. 2016, 1, 33–46. [Google Scholar] [CrossRef]
- Gorenflo, L.J.; Romaine, S.; Mittermeier, R.A.; Walker-Painemilla, K. Co-Occurrence of Linguistic and Biological Diversity in Biodiversity Hotspots and High Biodiversity Wilderness Areas. Proc. Natl. Acad. Sci. USA 2012, 109, 8032–8037. [Google Scholar] [CrossRef] [Green Version]
- Maddieson, I.; Coupé, C. Human Spoken Language Diversity and the Acoustic Adaptation Hypothesis. J. Acoust. Soc. Am. 2015, 138, 1838. [Google Scholar] [CrossRef]
- Mariak, Z.; White, M.D.; Lewko, J.; Lyson, T.; Piekarski, P. Direct Cooling of the Human Brain by Heat Loss from the Upper Respiratory Tract. J. Appl. Physiol. 1999, 87, 1609–1613. [Google Scholar] [CrossRef]
- Naddaf, G. The Greek Concept of Nature; State University of New York Press: Albany, NY, USA, 2005; ISBN 978-0-79146-374-1. [Google Scholar]
- Roochnik, D. Retrieving the Ancients: An Introduction to Greek Philosophy; Wiley: Hoboken, NJ, US, 2004; ISBN 978-1-40510-862-1. [Google Scholar]
- Baltes, M. Plato’s School, the Academy. Hermathena 1993, 5–26. [Google Scholar]
- Luce, J.V. An Introduction to Greek Philosophy; Thames and Hudson: London, UK, 1992; ISBN 978-0-50027-655-6. [Google Scholar]
- Gottschalk, H.B. Notes on the Wills of the Peripatetic Scholarchs. Hermes 1972, 100, 314–342. [Google Scholar]
- Cohen, S.M.; Curd, P.; Reeve, C.D.C. Readings in Ancient Greek Philosophy: From Thales to Aristotle; Hackett Publishing: Indianapolis, IN, USA, 2016; ISBN 978-1-62466-534-9. [Google Scholar]
- Anderson, W.S. Calypso and Elysium. Class. J. 1958, 54, 2–11. [Google Scholar]
- Kearns, E. Elysium. Available online: https://oxfordre.com/classics/view/10.1093/acrefore/9780199381135.001.0001/acrefore-9780199381135-e-2390 (accessed on 29 August 2022).
- Zarkadoulas, N.; Koutsoyiannis, D.; Mamassis, N.; Papalexiou, S.M. Climate, Water and Health in Ancient Greece; European Geosciences Union: Munich, Germany, 2008. [Google Scholar]
- Runnels, C.N. Environmental Degradation in Ancient Greece. Sci. Am. 1995, 272, 96–99. [Google Scholar] [CrossRef]
- Knitter, D.; Günther, G.; Hamer, W.B.; Keßler, T.; Seguin, J.; Unkel, I.; Weiberg, E.; Duttmann, R.; Nakoinz, O. Land Use Patterns and Climate Change—a Modeled Scenario of the Late Bronze Age in Southern Greece. Environ. Res. Lett. 2019, 14, 125003. [Google Scholar] [CrossRef] [Green Version]
- Okuda, M.; Yasuda, Y.; Setoguchi, T. Middle to Late Pleistocene Vegetation History and Climatic Changes at Lake Kopais, Southeast Greece. Boreas 2001, 30, 73–82. [Google Scholar] [CrossRef]
- Ekroth, G.; Nilsson, I. Round Trip to Hades in the Eastern Mediterranean Tradition: Visits to the Underworld from Antiquity to Byzantium; BRILL: Leiden, The Netherlands, 2018; ISBN 978-9-00437-596-3. [Google Scholar]
- Lye, S. The Goddess Styx and the Mapping of World Order in Hesiod’s “Theogony”. Rev. Philos. Anc. 2009, 27, 3–31. [Google Scholar]
- Bell, B. The Dark Ages in Ancient History. I. The First Dark Age in Egypt. Am. J. Archaeol. 1971, 75, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Welc, F.; Marks, L. Climate Change at the End of the Old Kingdom in Egypt around 4200 BP: New Geoarchaeological Evidence. Quat. Int. 2014, 324, 124–133. [Google Scholar] [CrossRef]
- Lionello, P. The Climate of the Mediterranean Region: From the Past to the Future; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-12416-042-2. [Google Scholar]
- Casey, J. After Lives: A Guide to Heaven, Hell, and Purgatory; Illustrated edition; Oxford University Press: Oxford, UK, 2009; ISBN 978-0-19509-295-0. [Google Scholar]
- Brooke-Hitching, E. The Devil’s Atlas: An Explorer’s Guide to Heavens, Hells and Afterworlds; Chronicle Books: London, UK, 2022; ISBN 978-1-79721-447-4. [Google Scholar]
- Price, N. Nine Paces from Hel: Time and Motion in Old Norse Ritual Performance. World Archaeol. 2014, 46, 178–191. [Google Scholar] [CrossRef]
- Carlsen, C. Old Norse Visions of the Afterlife. Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- O’Donoghue, H. From Asgard to Valhalla: The Remarkable History of the Norse Myths; Bloomsbury Publishing: London, UK, 2007; ISBN 1-84-511829-4. [Google Scholar]
- Petraglia, M.D.; Groucutt, H.S.; Guagnin, M.; Breeze, P.S.; Boivin, N. Human Responses to Climate and Ecosystem Change in Ancient Arabia. Proc. Natl. Acad. Sci. USA 2020, 117, 8263–8270. [Google Scholar] [CrossRef] [Green Version]
- Kotwicki, V.; Al Sulaimani, Z. Climates of the Arabian Peninsula—Past, Present, Future. Int. J. Clim. Chang. Strateg. Manag. 2009, 1, 297–310. [Google Scholar] [CrossRef]
- Rustomji, N. The Garden and the Fire: Heaven and Hell in Islamic Culture; Columbia University Press: New York, NY, USA, 2008; 240p, ISBN 978-0-23151-183-4. [Google Scholar]
- Lange, C. Paradise and Hell in Islamic Traditions; Cambridge University Press: Cambridge, UK, 2016; ISBN 0-52-150637-9. [Google Scholar]
- Crown, A.D. Toward a Reconstruction of the Climate of Palestine 8000 B.C.–0 B.C. J. Near East. Stud. 1972, 31, 312–330. [Google Scholar] [CrossRef]
- Huntington, E. The Climate of Ancient Palestine. Part I. Bull. Am. Geogr. Soc. 1908, 40, 513–522. [Google Scholar] [CrossRef]
- Huntington, E. The Climate of Ancient Palestine. Part II. Bull. Am. Geogr. Soc. 1908, 40, 577–586. [Google Scholar] [CrossRef]
- Gregory, J.W. Palestine and the Stability of Climate in Historic Times. Geogr. J. 1930, 76, 487–494. [Google Scholar] [CrossRef]
- Ridderman, E. The Antinomy of Gehenna: Pavel Florensky’s Contribution to Debates on Hell and Universalism. Scott. J. Theol. 2021, 74, 235–251. [Google Scholar] [CrossRef]
- Bailey, L.R. Enigmatic Bible Passages: Gehenna: The Topography of Hell. Biblical Archaeol. 1986, 49, 187–191. [Google Scholar] [CrossRef]
- Shinn, G.W. What Has Become of Hell? North Am. Rev. 1900, 170, 837–849. [Google Scholar]
- Cohn-Sherbok, D. Judaism: History, Belief and Practice; Routledge: London, UK, 2003; ISBN 978-0-20340-251-1. [Google Scholar]
- Wright, J.E. The Early History of Heaven; Oxford University Press: Oxford, UK, 2002; ISBN 978-0-19515-230-2. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalampopoulos, I.; Matzarakis, A. Thoughts about the Thermal Environment and the Development of Human Civilisation. Atmosphere 2022, 13, 1925. https://doi.org/10.3390/atmos13111925
Charalampopoulos I, Matzarakis A. Thoughts about the Thermal Environment and the Development of Human Civilisation. Atmosphere. 2022; 13(11):1925. https://doi.org/10.3390/atmos13111925
Chicago/Turabian StyleCharalampopoulos, Ioannis, and Andreas Matzarakis. 2022. "Thoughts about the Thermal Environment and the Development of Human Civilisation" Atmosphere 13, no. 11: 1925. https://doi.org/10.3390/atmos13111925
APA StyleCharalampopoulos, I., & Matzarakis, A. (2022). Thoughts about the Thermal Environment and the Development of Human Civilisation. Atmosphere, 13(11), 1925. https://doi.org/10.3390/atmos13111925