Evaluating the Impact of Vehicular Aerosol Emissions on Particulate Matter (PM2.5) Formation Using Modeling Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area and Data
2.2. Meteorological Conditions in February 2018
2.3. Ground-Measured PM2.5 Records: Filling Data Gaps with Machine Learning (ML)
2.4. Weather Research and Forecasting Coupled with Chemistry (WRF-Chem) Model Description
2.5. Anthropogenic Vehicle Emissions in the Metropolitan Area of Lima and Callao (MALC)
2.6. Statistical Metrics Approach to Evaluate the Model Performance
2.7. Sensitivity Tests
3. Results and Discussion
3.1. Evaluation of Model Performance in Terms of Determining PM2.5 Concentration and Meteorological Variables
3.2. Effect of Vehicular Aerosol Emission on PM2.5 Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms
Appendix A
- Mean bias (MB):
- 2.
- Root mean square error (RMSE):
- 3.
- Mean Gross Error (MGE):
- 4.
- Fractional bias (FraB):
- 5.
- Fractional error (FraE):
- 6.
- Mean absolute error (MAE):
References
- Cristaldi, A.; Fiore, M.; Conti, G.; Pulvirenti, E.; Favara, C.; Grasso, A.; Copat, C.; Ferrante, M. Possible association between PM2.5 and neurodegenerative diseases: A systematic review. Environ. Res. 2022, 15, 112581. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Lesseur, C.; Deyssenroth, M.A.; Kloog, I.; Schwartz, J.D.; Marsit, C.J.; Chen, J. PM2.5 exposure during pregnancy is associated with altered placental expression of lipid metabolic genes in a US birth cohort. Environ Res. 2022, 211, 113066. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Chuai, X.; Gao, R.; Pang, B. Regional interaction of lung cancer incidence influenced by PM2.5 in China. Sci Total Environ. 2022, 10, 149979. [Google Scholar] [CrossRef]
- Guo, X.; Lin, Y.; Lin, Y.; Zhong, Y.; Yu, H.; Huang, Y.; Yang, J.; Cai, Y.; Liu, F.; Li, Y.; et al. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ. Pollut. 2022, 303, 119115. [Google Scholar] [CrossRef]
- Liang, X.; Chen, J.; An, X.; Liu, F.; Liang, F.; Tang, X.; Qu, P. The impact of PM2.5 on children’s blood pressure growth curves: A prospective cohort study. Environ. Int. 2022, 1, 107012. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, Y.; Song, Y.; Dong, B.; Martin, R.; Shi, L.; Ma, Y.; Zou, Z.; Ma, J. Long-term effects of PM2.5 components on blood pressure and hypertension in Chinese children and adolescents. Environ. Int. 2022, 161, 107134. [Google Scholar]
- Siudek, P. Seasonal distribution of PM2.5-bound polycyclic aromatic hydrocarbons as a critical indicator of air quality and health impact in a coastal-urban region of Poland. Sci. Total Environ. 2022, 827, 154375. [Google Scholar] [CrossRef]
- Yang, J.; Kang, S.; Ji, Z.; Tripathee, L.; Yin, X.; Yang, R. Investigation of variations causes and component distributions of PM2.5 mass in China using a coupled regional climate-chemistry model. Atmos. Pollut. Res. 2020, 11, 319–331. [Google Scholar]
- Liu, W.; Xu, Y.; Liu, W.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Tao, S. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environ. Pollut. 2018, 236, 514–528. [Google Scholar] [CrossRef]
- Tofful, L.; Canepari, S.; Sargolini, T.; Perrino, C. Indoor air quality in a domestic environment: Combined contribution of indoor and outdoor PM sources. Build. Environ. 2021, 202, 108050. [Google Scholar] [CrossRef]
- Pinto, J.A.; Kumar, P.; Alonso, M.F.; Andreão, W.L.; Pedruzzi, R.; Santos, F.S.; Moreira, D.M.; Albuquerque, T.T.A. Traffic data in air quality modeling: A review of key variables, improvements in results, open problems and challenges in current research. Atmos. Pollut. Res. 2020, 11, 454–468. [Google Scholar] [CrossRef]
- Andrade, M.F.; Kumar, P.; Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; Miranda, R.M.; Albuquerque, T.; et al. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 2017, 159, 66–82. [Google Scholar] [CrossRef]
- Ibarra-Espinosa, S.; Ynoue, R.Y.; Ropkins, K.; Zhang, X.; Freitas, E.D. High spatial and temporal resolution vehicular emissions in south-east Brazil with traffic data from real-time GPS and travel demand models. Atmos. Environ. 2020, 222, 117136. [Google Scholar] [CrossRef]
- Soleimani, M.; Akbari, N.; Saffari, B.; Haghshenas, H. Health effect assessment of PM2.5 pollution due to vehicular traffic (case study: Isfahan). J. Transp. Health 2022, 24, 101329. [Google Scholar] [CrossRef]
- IQAir. 2018 World Air Quality Report Region and City PM2.5 Ranking [Internet]. 2018 [Cited 2021 Jul 17]. Available online: https://www.iqair.com/world-air-quality-ranking (accessed on 18 July 2021).
- City Population. All Urban Agglomerations of the World with a Population of 1 Million Inhabitants or More [Internet]. 2022 [Cited 2022 Jan 2]. Available online: https://citypopulation.de/en/world/agglomerations/ (accessed on 3 January 2022).
- Tapia, V.; Steenland, K.; Sarnat, S.E.; Vu, B.; Liu, Y.; Sánchez-Ccoyllo, O.; Vasquez, V.; Gonzales, G.F. Time-series analysis of ambient PM2.5 and cardiorespiratory emergency room visits in Lima, Peru during 2010–2016. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 680–688. [Google Scholar]
- Luo, L.; Bai, X.; Liu, S.; Wu, B.; Liu, W.; Lv, Y.; Guo, Z.; Lin, S.; Zhao, S.; Hao, Y.; et al. Fine particulate matter (PM2.5/PM1.0) in Beijing, China: Variations and chemical compositions as well as sources. J. Environ. Sci. 2022, 121, 187–198. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled ‘online’ chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Jat, R.; Gurjar, B.R.; Lowe, D. Regional pollution loading in winter months over India using high resolution WRF-Chem simulation. Atmos. Res. 2021, 249, 105326. [Google Scholar] [CrossRef]
- Kong, Y.; Sheng, L.; Li, Y.; Zhang, W.; Zhou, Y.; Wang, W.; Zhao, Y. Improving PM2.5 forecast during haze episodes over China based on a coupled 4D-LETKF and WRF-Chem system. Atmos. Res. 2021, 249, 105366. [Google Scholar] [CrossRef]
- Sati, A.P.; Mohan, M. Impact of increase in urban sprawls representing five decades on summer-time air quality based on WRF-Chem model simulations over central-National Capital Region, India. Atmos. Pollut. Res. 2021, 12, 404–416. [Google Scholar] [CrossRef]
- Sicard, P.; Crippa, P.; Marco, A.; Castruccio, S.; Giani, P.; Cuesta, J.; Paoletti, E.; Feng, Z.; Anav, A. High spatial resolution WRF-Chem model over Asia: Physics and chemistry evaluation. Atmos. Environ. 2021, 244, 118004. [Google Scholar] [CrossRef]
- Hernández, K.S.; Henao, J.J.; Rendón, A.M. Dispersion simulations in an Andean city: Role of continuous traffic data in the spatio-temporal distribution of traffic emissions. Atmos. Pollut. Res. 2022, 13, 101361. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, C.; Song, X. Numerical evaluation of turbulence induced by wind and traffic, and its impact on pollutant dispersion in street canyons. Sustain. Cities Soc. 2021, 74, 103142. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J. CFD simulations of wind flow and pollutant dispersion in a street canyon with traffic flow: Comparison between RANS and LES. Sustain. Cities Soc. 2021, 75, 103307. [Google Scholar] [CrossRef]
- Kovács, A.; Leelossy, Á.; Tettamanti, T.; Esztergár-Kiss, D.; Mészáros, R.; Lagzi, I. Coupling traffic originated urban air pollution estimation with an atmospheric chemistry model. Urban Clim. 2021, 37, 100868. [Google Scholar] [CrossRef]
- Reátegui-Romero, W.; Sánchez-Ccoyllo, O.R.; Andrade, M.F.; Moya-Alvarez, A. PM2.5 Estimation with the WRF/Chem Model, Produced by Vehicular Flow in the Lima Metropolitan Area. Open J. Air Pollut. 2018, 7, 215–243. [Google Scholar] [CrossRef] [Green Version]
- Vara-Vela, A.; Andrade, M.F.; Kumar, P.; Ynoue, R.Y.; Muñoz, A.G. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: A numerical study with the WRF-Chem model. Atmos. Chem. Phys. 2016, 16, 777–797. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ccoyllo, O.R.; Ordoñez-Aquino, C.G.; Muñoz, Á.G.; Llacza, A.; Andrade, M.F.; Liu, Y.; Reátegui-Romero, W.; Brasseur, G. Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016. Int. J. Appl. Eng. Res. 2018, 13, 10129–10141. [Google Scholar] [CrossRef]
- Vu, B.N.; Sánchez, O.; Bi, J.; Xiao, Q.; Hansel, N.N.; Checkley, W.; Gonzales, G.F.; Steenland, K.; Liu, Y. Developing an advanced PM2.5 exposure model in Lima, Peru. Remote Sens. 2019, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ccoyllo, O.R.; Ordoñez-Aquino, C.G.; Arratea-Morán, J.; Marín-Huachaca, N.S.; Reátegui-Romero, W. Describing aerosol and assessing health effects in Lima, Peru. Int. J. Environ. Sci. Dev. 2021, 12, 355–362. [Google Scholar] [CrossRef]
- Vasquez-Apestegui, B.; Parras-Garrido, E.; Tapia, V.; Paz-Aparicio, V.M.; Rojas, J.P.; Sanchez-Ccoyllo, O.R.; Gonzales, G.F. Association between air pollution in Lima and the high incidence of COVID-19: Findings from a post hoc analysis. BMC Public Health 2021, 21, 1161. [Google Scholar] [CrossRef] [PubMed]
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; Andrade, M.F.; Pavlovic, R.; Garland, R.M.; Massagué, J.; Kong, S.; et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef]
- Pereira, G.M.; Oraggio, B.; Teinilä, K.; Custódio, D.; Huang, X.; Hillamo, R.; Alves, C.; Balasubramanian, R.; Rojas, N.; Sanchez-Ccoyllo, O.R.; et al. A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and Sao Paulo. Air Qual. Atmos. Health 2019, 12, 1141–1152. [Google Scholar] [CrossRef]
- USEPA. Assessing the Mortality Burden of Air Pollution in Lima-Callao [Internet]. 2021 [Cited 7 July 2022]. pp. 1–56. Available online: https://www.epa.gov/sites/default/files/2021-06/documents/lima_megacities_technical_report_20210514_english_0.pdf. (accessed on 11 April 2022).
- AAP. [Junk Bonos] [Internet]. 2020 [Cited 7 July 2022]. pp. 1–11. Available online: https://aap.org.pe/actualizateconlaaap/bono-chatarreo/Bono-Chatarreo.pdf (accessed on 14 January 2022).
- TOM2. TomTom Traffic Index: Mumbai Takes Crown of ‘Most Traffic Congested City’ in World [Internet]. 2019 [Cited 7 July 2022]. Available online: https://www.businesswire.com/news/home/20190603005831/en/TomTom-Traffic-Index-Mumbai-takes-Crown-%E2%80%98Most (accessed on 12 July 2021).
- JICA. [Survey to Collect Basic Information on Urban Transport in the Metropolitan Area of Lima and Callao. Final Report] [Internet]. 2013 [Cited 7 July 2022]. pp. 1–113. Available online: https://openjicareport.jica.go.jp/Pdf/12087532_01.Pdf (accessed on 28 January 2022).
- Huneeus, N.; Gon, D.H.; Castesana, P.; Menares, C.; Granier, C.; Granier, L.; Alonso, M.; Andrade, M.F.; Dawidowski, L.; Gallardo, L.; et al. Evaluation of anthropogenic air pollutant emission inventories for South America at national and city scale. Atmos. Environ. 2020, 235, 117606. [Google Scholar] [CrossRef]
- Deuman, I.; Walsh, I.C.C. Informe Final: Estudio de Línea Base Ambiental COSAC I [Internet]. Lima; 2005 [Cited 7 June 2022]. Available online: https://www.scribd.com/document/366319703/Resumen-Ejecutivo-Linea-Base-Ambiental (accessed on 6 June 2022).
- INEI. Transporte, Almacenamiento, Correo y Mensajería. Lima Metropolitana: Tráfico Vehicular Mensual Registrado, por Tipo de Vehículo y Centro de Recaudación-Garitas, 2011–2020 [Internet]. 2022 [Cited 30 June 2022]. Available online: https://www.inei.gob.pe/ (accessed on 1 July 2022).
- Lumiaro, E.; Todorović, M.; Kurten, T.; Vehkamäki, H.; Rinke, P. Predicting gas-particle partitioning coefficients of atmospheric molecules with machine learning. Atmos. Chem. Phys. 2021, 21, 13227–13246. [Google Scholar] [CrossRef]
- Topalović, D.B.; Davidović, M.D.; Jovanović, M.; Bartonova, A.; Ristovski, Z.; Jovašević-Stojanović, M. In search of an optimal in-field calibration method of low-cost gas sensors for ambient air pollutants: Comparison of linear, multilinear and artificial neural network approaches. Atmos. Environ. 2019, 213, 640–658. [Google Scholar] [CrossRef]
- Fung, P.L.; Zaidan, M.A.; Timonen, H.; Niemi, J.; Kousa, A.; Kuula, J.; Luoma, K.; Tarkoma, S.; Petäjä, T.; Kulmala, M.; et al. Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration. J. Aerosol. Sci. 2021, 152, 105694. [Google Scholar] [CrossRef]
- Pei, Z.; Zhang, D.; Zhi, Y.; Yang, T.; Jin, L.; Fu, D.; Cheng, X.; Terryn, H.A.; Mol, J.M.C.; Li, X. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corros. Sci. 2020, 170, 108697. [Google Scholar] [CrossRef]
- Yang, N.; Shi, H.; Tang, H.; Yang, X. Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting. Remote Sens. Environ. 2022, 269, 112828. [Google Scholar]
- Fast, J.D.; Gustafson, W.I.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. 2006, 16, 111. [Google Scholar] [CrossRef]
- Chen, S.H.; Sun, W.Y. A One-dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Jpn. 2002, 80, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J.A. New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Mamtimin, A.; Fan, S.; Ju, C.A. new land-use dataset for the weather research and forecasting (WRF) Model. Atmosphere 2020, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.F.; Ynoue, R.; Freitas, E.D.; Todesco, E.; Vela, A.V.; Ibarra, S.; Martins, L.D.; Martins, J.A.; Carvalho, V.S.B. Air quality forecasting system for Southeastern Brazil. Front. Environ. Sci. 2015, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Tong, P.; Liu, M.; Lin, H.; Yun, X.; Zhang, H.; Tao, W.; Liu, J.; Wang, S.; Tao, S.; et al. A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2020, 253, 109751. [Google Scholar] [CrossRef]
- Vara-Vela, A.; Andrade, M.F.; Zhang, Y.; Kumar, P.; Ynoue, R.Y.; Souto-Oliveira, C.E.; Silva, L.F.J.; Landulfo, E. Modeling of Atmospheric Aerosol Properties in the São Paulo Metropolitan Area: Impact of Biomass Burning. J. Geophys. Res. Atmos. 2018, 123, 9935–9956. [Google Scholar] [CrossRef]
- Lents, J.; Davis, N.; Nikkila, N.; Osses, M. Lima Vehicle Activity Study. Final Report [Internet]. 2004 [Cited 7 July 2022]. Available online: http://www.gssr.net/ (accessed on 21 January 2022).
- Liu, Y.; Huang, W.; Lin, X.; Xu, R.; Li, L.; Ding, H. Variation of spatio-temporal distribution of on-road vehicle emissions based on real-time RFID data. J. Environ. Sci. 2022, 116, 151–162. [Google Scholar] [CrossRef]
- MINAM. El Perú y el Cambio Climático, Segunda Comunicación Nacional del Perú (Traslated as “Peru and Climate Change, Second National Communication of Peru”) [Internet]. Lima; 2010, [Cited 7 July 2022]. Available online: http://www.minam.gob.pe (accessed on 8 April 2022).
- Chuang, M.T.; Wu, C.F.; Lin, C.Y.; Lin, W.C.; Chou, C.C.K.; Lee, C.T.; Lin, T.H.; Fu, J.S.; Kong, S.S.K. Simulating nitrate formation mechanisms during PM2.5 events in Taiwan and their implications for the controlling direction. Atmos. Environ. 2022, 269, 118856. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Gong, K.; Mao, J.; Hu, J.; Li, J.; Liu, Z.; Liao, H.; Qiu, W.; Yu, Y.; et al. Modelling air quality during the EXPLORE-YRD campaign–Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmos. Environ. 2021, 246, 118131. [Google Scholar] [CrossRef]
- Baykara, M.; Im, U.; Unal, A. Evaluation of impact of residential heating on air quality of megacity Istanbul by CMAQ. Sci. Total Environ. 2019, 651, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Chen, X.; Kang, S.; Yang, J.; Ji, Z. Investigation of black carbon climate effects in the Arctic in winter and spring. Sci. Total Environ. 2021, 751, 142145. [Google Scholar] [CrossRef]
- Ha Chi, N.N.; Kim Oanh, N.T. Photochemical smog modeling of PM2.5 for assessment of associated health impacts in crowded urban area of Southeast Asia. Environ. Technol. Innov. 2021, 21, 101241. [Google Scholar] [CrossRef]
- Sulaymon, I.D.; Zhang, Y.; Hopke, P.K.; Hu, J.; Zhang, Y.; Li, L.; Mei, X.; Gong, K.; Shi, Z.; Zhao, B.; et al. Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China. Environ. Res. 2021, 198, 111186. [Google Scholar] [CrossRef]
- Nguyen, G.T.H.; Shimadera, H.; Uranishi, K.; Matsuo, T.; Kondo, A.; Thepanondh, S. Numerical assessment of PM2.5 and O3 air quality in continental Southeast Asia: Baseline simulation and aerosol direct effects investigation. Atmos. Environ. 2019, 219, 117054. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, X.; Zhang, H. Modeling PM2.5 and O3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China. Chemosphere 2020, 254, 126735. [Google Scholar] [CrossRef]
- Su, F.; Xu, Q.; Wang, K.; Yin, S.; Wang, S.; Zhang, R.; Tang, X.; Ying, Q. On the effectiveness of short-term intensive emission controls on ozone and particulate matter in a heavily polluted megacity in central China. Atmos. Environ. 2021, 246, 118111. [Google Scholar] [CrossRef]
- Kitagawa, Y.K.L.; Pedruzzi, R.; Galvão, E.S.; Araújo, I.B.; Alburquerque, T.T.A.; Kumar, P.; Nascimento, E.G.S.; Moreira, D.M. Source apportionment modelling of PM2.5 using CMAQ-ISAM over a tropical coastal-urban area. Atmos. Pollut. Res. 2021, 12, 101250. [Google Scholar] [CrossRef]
- Qiao, X.; Yuan, Y.; Tang, Y.; Ying, Q.; Guo, H.; Zhang, Y.; Zhang, H. Revealing the origin of fine particulate matter in the Sichuan Basin from a source-oriented modeling perspective. Atmos. Environ. 2021, 244, 117896. [Google Scholar] [CrossRef]
Model Organized | Used |
---|---|
Domain Simulation time | Lima 1 February–2 March 2018 |
Spin-up | 30–31 January 2018 |
Horizontal resolution | 5 km |
Centered | −12.034 S, −77.033 W |
Map projection | Mercator |
Physical alternatives | Selected scheme |
Microphysics | Purdue Lin |
Shortwave radiation | Goddard |
Longwave radiation | Rapid radiative transfer model |
Cloud fraction option | Xu-Randall method |
Surface layer | Revised MM5 surface layer scheme |
Land surface | Noah Land Surface Model |
Boundary layer scheme | Yonsei University |
Cumulus parameterization | Grell 3D |
Dynamics alternatives | Selected scheme |
Diffusion | Simple diffusion |
K coefficients | 2D (horizontal) deformation |
Chemical alternatives | Selected scheme |
Photolysis scheme | Madronich F-TUV |
Gas-phase mechanism | RADM2 1 |
Aerosol model | MADE 2/SORGAM 3 |
Emission | RADM2/MADE/SORGAM anthropogenic emissions |
Site Code | Num 4 | FraB 5 (%) | FraE 6 (%) |
---|---|---|---|
Ate | 672 | −21.1 | 53.9 |
SBO 1 | 672 | 55.4 | 73.6 |
SJL 2 | 672 | 34.9 | 52.5 |
PPI 3 | 672 | 22.8 | 64.3 |
Statistical Calculate | Lima |
---|---|
Temperature (T2) | |
Modeled (°C) | 24.0 ± 2.1 |
Observed (°C) | 24.6 ± 2.7 |
MB 1 (°C) | −0.57 |
MGE 2 (°C) | 1.05 |
RMSE 3 (°C) | 1.38 |
Relative humidity (RH2) | |
Modeled (%) | 72.4 ± 9.6 |
Observed (%) | 68.7 ± 11.1 |
MB (%) | 3.63 |
MGE (%) | 5.86 |
RMSE (%) | 7.05 |
Wind velocity (WS10) | |
Modeled (m/s) | 3.3 ± 1.7 |
Observed (m/s) | 1.6 ± 1.0 |
MB (m/s) | 1.66 |
MGE (m/s) | 1.72 |
RMSE (m/s) | 2.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Ccoyllo, O.R.; Llacza, A.; Ayma-Choque, E.; Alonso, M.; Castesana, P.; Andrade, M.d.F. Evaluating the Impact of Vehicular Aerosol Emissions on Particulate Matter (PM2.5) Formation Using Modeling Study. Atmosphere 2022, 13, 1816. https://doi.org/10.3390/atmos13111816
Sánchez-Ccoyllo OR, Llacza A, Ayma-Choque E, Alonso M, Castesana P, Andrade MdF. Evaluating the Impact of Vehicular Aerosol Emissions on Particulate Matter (PM2.5) Formation Using Modeling Study. Atmosphere. 2022; 13(11):1816. https://doi.org/10.3390/atmos13111816
Chicago/Turabian StyleSánchez-Ccoyllo, Odón R., Alan Llacza, Elizabeth Ayma-Choque, Marcelo Alonso, Paula Castesana, and Maria de Fatima Andrade. 2022. "Evaluating the Impact of Vehicular Aerosol Emissions on Particulate Matter (PM2.5) Formation Using Modeling Study" Atmosphere 13, no. 11: 1816. https://doi.org/10.3390/atmos13111816
APA StyleSánchez-Ccoyllo, O. R., Llacza, A., Ayma-Choque, E., Alonso, M., Castesana, P., & Andrade, M. d. F. (2022). Evaluating the Impact of Vehicular Aerosol Emissions on Particulate Matter (PM2.5) Formation Using Modeling Study. Atmosphere, 13(11), 1816. https://doi.org/10.3390/atmos13111816