Features and Evolution of Autumn Weather Regimes in the Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. SOM Training Input Data (Reanalysis Data)
2.2.2. Analysis and Validation Data (Precipitation Grid Data and Temperature Grid Data)
2.2.3. Teleconnection Indices
2.3. Self-Organizing Maps Technique
2.4. Validity of the Clustering Algorithm
2.5. Monte Carlo Analysis
2.6. Markov Chain Analysis
3. Results
3.1. Weather Types
3.1.1. Validation of Clustering Results
3.1.2. Clustering Results
3.2. Temperature and Precipitation Distribution Characteristics in Each WT
3.3. Teleconnection Relationship to WT Frequency
3.4. Progressions of Early and Late Season WTs
3.4.1. Monthly Frequency
- (1)
- WT1, WT2, WT4, and WT7 in the month of September.
- (2)
- WT4, WT5, and WT8 in the month of October.
- (3)
- WT3, WT6, and WT9 in November.
3.4.2. Daily Evolution
3.4.3. Typical Evolution
3.4.4. Continuity of WT
3.5. Characterization of Two Typical Progressions (One Representative from Each of the Front and Back Halves of the Fall)
3.6. Comparison of the Frequency of WT Occurrence in the Anterior and Posterior 20 Years of the Last 40 Years (1981–2020) between the Anterior and Posterior Halves of the Autumn
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, K. The Variation of Autumn Rainfall in Southeast China and Its Association with Sea Surface Temperature in the Tropical Pacifil Sea. Ph.D. Thesis, Yunnan University, Kunming, China, 2018. [Google Scholar]
- Jian, M.Q.; Qiao, Y.T. Characteristics of general circulation anomalies related to the drought events in fall in south China. Chin. J. Atmos. Sci. 2012, 36, 204–214. [Google Scholar]
- Jiang, Z.Y.; Xu, H.M.; Ma, J. Atmospheric circulation characteristics of heavy precipitation events and impact of sea surface temperature over the southern China in the autumn of 2016. Chin. J. Atmos. Sci. 2021, 45, 1023–1038. (In Chinese) [Google Scholar] [CrossRef]
- Sha, T.Y.; Xu, H.M.; Zou, S.Z. Atmospheric circulation characteristics and cause analysis for autumn drought in the eastern region of southwest China. Trans. Atmos. Sci. 2013, 36, 593–603. (In Chinese) [Google Scholar] [CrossRef]
- Ohba, M.; Ueda, H. A role of zonal gradient of SST between the Indian ocean and the western pacific in localized convection around the Philippines. SOLA 2006, 2, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian ocean capacitor effect on Indo—Western pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.-P.; Lau, N.-C.; Vecchi, G.A. Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA 2013, 110, 7574–7579. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Yang, L.; Xie, S.-P. Tropical Indian ocean influence on northwest pacific tropical cyclones in summer following strong El Niño. J. Clim. 2011, 24, 315–322. [Google Scholar] [CrossRef]
- Yonekura, E.; Hall, T.M. ENSO effect on east Asian tropical cyclone landfall via changes in tracks and genesis in a statistical model. J. Appl. Meteorol. Clim. 2014, 53, 406–420. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Hu, Z.Z.; Kirtman, B.P. Evolution of ENSO-related rainfall anomalies in east Asia. J. Clim. 2003, 16, 3742–3758. [Google Scholar] [CrossRef]
- Yamaura, T.; Tomita, T. Covariability between the baiu precipitation and tropical cyclone activity through large-scale atmospheric circulations. J. Meteorol. Soc. Jpn. 2012, 90, 449–465. [Google Scholar] [CrossRef] [Green Version]
- El-Kadi, A.K.A.; Smithson, P.A. Atmospheric classifications and synoptic climatology. Prog. Phys. Geogr. 1992, 16, 432–455. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef]
- Ramos, A.M.; Barriopedro, D.; Dutra, E. Circulation weather types as a tool in atmospheric, climate, and environmental research. Front. Environ. Sci. 2015, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, Á.G.; Yang, X.; Vecchi, G.A.; Robertson, A.W.; Cooke, W.F. A weather-type-based cross-time-scale diagnostic framework for coupled circulation models. J. Clim. 2017, 30, 8951–8972. [Google Scholar] [CrossRef]
- Kang, I.-S.; Ho, C.-H.; Lim, Y.-K. Principal modes of climatological seasonal and intraseasonal variations of the asian summer monsoon. Mon. Weather Rev. 1999, 127, 322–340. [Google Scholar] [CrossRef]
- Lau, K.-M.; Chan, P.H. Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Weather Rev. 1986, 114, 1354–1367. [Google Scholar] [CrossRef]
- Krishnamurthy, V.; Shukla, J. Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Clim. 2007, 20, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.H.; Robertson, A.W.; Kang, I.-S. Analysis of intraseasonal and interannual variability of the asian summer monsoon using a hidden Markov model. J. Clim. 2010, 23, 5498–5516. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Ohba, M.; Kadokura, S.; Yoshida, Y.; Nohara, D.; Toyoda, Y. Anomalous weather patterns in relation to heavy precipitation events in Japan during the baiu season. J. Hydrometeorol. 2015, 16, 688–701. [Google Scholar] [CrossRef]
- Hewitson, B.C.; Crane, R.G. Self-organizing maps: Applications to synoptic climatology. Clim. Res. 2002, 22, 13–26. [Google Scholar] [CrossRef]
- Reusch, D.B.; Hewitson, B.C.; Alley, R.B. Towards ice-core-based synoptic reconstructions of west antarctic climate with artificial neural networks. Int. J. Clim. 2005, 25, 581–610. [Google Scholar] [CrossRef]
- Hope, P.K.; Drosdowsky, W.; Nicholls, N. Shifts in the synoptic systems influencing southwest western Australia. Clim. Dyn. 2006, 26, 751–764. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Kiem, A.S. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall. Hydrol. Earth Syst. Sci. 2009, 13, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Reusch, D.B. Nonlinear climatology and paleoclimatology: Capturing patterns of variability and change with self-organizing maps. Phys. Chem. Earth Parts A/B/C 2010, 35, 329–340. [Google Scholar] [CrossRef]
- Hosking, J.S.; Fogt, R.; Thomas, E.R.; Moosavi, V.; Phillips, T.; Coggins, J.; Reusch, D. Accumulation in coastal west Antarctic ice core records and the role of cyclone activity. Geophys. Res. Lett. 2017, 44, 9084–9092. [Google Scholar] [CrossRef] [Green Version]
- Leloup, J.A.; Lachkar, Z.; Boulanger, J.-P.; Thiria, S. Detecting decadal changes in ENSO using neural networks. Clim. Dyn. 2007, 28, 147–162. [Google Scholar] [CrossRef]
- Tozuka, T.; Luo, J.-J.; Masson, S.; Yamagata, T. Tropical Indian ocean variability revealed by self-organizing maps. Clim. Dyn. 2008, 31, 333–343. [Google Scholar] [CrossRef]
- Johnson, N.C. How many ENSO flavors can we distinguish? J. Clim. 2013, 26, 4816–4827. [Google Scholar] [CrossRef]
- Reusch, D.B.; Alley, R.B.; Hewitson, B.C. North Atlantic climate variability from a self-organizing map perspective. J. Geophys. Res. Earth Surf. 2017, 112, 7460. [Google Scholar] [CrossRef]
- Johnson, N.C.; Feldstein, S.B. The continuum of north Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Clim. 2010, 23, 851–867. [Google Scholar] [CrossRef] [Green Version]
- Kolczynski, W.C.; Hacker, J.P. The potential for self-organizing maps to identify model error structures. Mon. Weather Rev. 2014, 142, 1688–1696. [Google Scholar] [CrossRef]
- Radić, V.; Clarke, G. Evaluation of IPCC models’ performance in simulating late-twentieth-century climatologies and weather patterns over north America. J. Clim. 2011, 24, 5257–5274. [Google Scholar] [CrossRef] [Green Version]
- Cavazos, T.; Comrie, A.C.; Liverman, D.M. Intraseasonal variability associated with wet monsoons in southeast Arizona. J. Clim. 2002, 15, 2477–2490. [Google Scholar] [CrossRef]
- Chattopadhyay, R.; Sahai, A.K.; Goswami, B.N. Objective identification of nonlinear convectively coupled phases of monsoon intraseasonal oscillation: Implications for prediction. J. Atmos. Sci. 2008, 65, 1549–1569. [Google Scholar] [CrossRef]
- Chu, J.-E.; Hameed, S.N.; Ha, K.-J. Nonlinear, intraseasonal phases of the east asian summer monsoon: Extraction and analysis using self-organizing maps. J. Clim. 2012, 25, 6975–6988. [Google Scholar] [CrossRef] [Green Version]
- Cavazos, T. Large-scale circulation anomalies conducive to extreme precipitation events and deviation of daily rainfall in northeastern Mexico and southeastern Texas. J. Clim. 1999, 12, 1506–1523. [Google Scholar] [CrossRef]
- Nishiyama, K.; Endo, S.; Jinno, K.; Uvo, C.B.; Olsson, J.; Berndtsson, R. Identification of typical synoptic patterns causing heavy rainfall in the rainy season in Japan by a self-organizing map. Atmos. Res. 2007, 83, 185–200. [Google Scholar] [CrossRef]
- Cassano, J.; Uotila, P.; Lynch, A.H.; Cassano, E.N. Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J. Geophys. Res. Earth Surf. 2007, 112, 332. [Google Scholar] [CrossRef] [Green Version]
- Polo, I.; Ullmann, A.; Roucou, P.; Fontaine, B. Weather regimes in the euro-atlantic and mediterranean sector, and relationship with west African rainfall over the 1989–2008 period from a self-organizing maps approach. J. Clim. 2011, 24, 3423–3432. [Google Scholar] [CrossRef] [Green Version]
- Cassano, J.J.; Uotila, P.; Lynch, A. Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int. J. Clim. 2006, 26, 1027–1049. [Google Scholar] [CrossRef]
- Lee, C.C. The development of a gridded weather typing classification scheme. Int. J. Clim. 2015, 35, 641–659. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R. Recent changes in frost days and the frost-free season in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1327–1332. [Google Scholar] [CrossRef]
- Cooter, E.J.; Leduc, S.K. Recent frost date trends in the north-eastern USA. Int. J. Clim. 1995, 15, 65–75. [Google Scholar] [CrossRef]
- Trenberth, K.E. What are the seasons? Bull. Am. Meteorol. Soc. 1983, 64, 1276–1282. [Google Scholar] [CrossRef]
- Sheridan, S.C. The redevelopment of a weather-type classification scheme for north America. Int. J. Clim. 2002, 22, 51–68. [Google Scholar] [CrossRef]
- Fleming, E.L.; Lim, G.; Wallace, J.M. 1987: Differences between the spring and autumn circulation of the northern hemi-sphere. J. Atmos. Sci. 1987, 44, 1266–1286. [Google Scholar] [CrossRef]
- Allen, M.J.; Sheridan, S.C. Evaluating changes in season length, onset, and end dates across the United States (1948–2012). Int. J. Clim. 2016, 36, 1268–1277. [Google Scholar] [CrossRef]
- Park, B.-J.; Kim, Y.-H.; Min, S.-K.; Lim, E.-P. Anthropogenic and natural contributions to the lengthening of the summer season in the northern hemisphere. J. Clim. 2018, 31, 6803–6819. [Google Scholar] [CrossRef]
- Meseguer-Ruiz, O.; Cortesi, N.; Guijarro, J.A.; Sarricolea, P. Weather regimes linked to daily precipitation anomalies in Northern Chile. Atmos. Res. 2019, 236, 104802. [Google Scholar] [CrossRef]
- Niu, N.; Li, J.P. The features of the heavy drought occurring to the south of the Yangtze River in China as well as the anomalies of atmospheric circulation in autumn 2004. Chin. J. Atmos. Sci. 2007, 31, 255–264. (In Chinese) [Google Scholar]
- Wang, Z.Y.; Zhou, B.T. Observed decadal transition in trend of autumn rainfall over central China in the late 1990s. J. Clim. 2019, 32, 1395–1409. [Google Scholar] [CrossRef]
- Gong, D.Y.; Wang, S.W. Impact of ENSO on global land and precipitation in China in the last 100 years. Chin. Sci. Bull. 1999, 44, 315–320. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, B.T.; Xu, M.L.; Sun, B.; Han, T.T.; Cheng, Z.G. Possible role of southern hemispheric sea ice in the variability of west China autumn rain. Atmos. Res. 2021, 249, 105329. [Google Scholar] [CrossRef]
- Zhu, J.X.; Huang, G.; Wang, X.Q.; Cheng, G.H. Investigation of changes in extreme temperature and humidity over China through a dynamical downscaling approach. Earth’s Futur. 2017, 5, 1136–1155. [Google Scholar] [CrossRef]
- Roller, C.D.; Qian, J.-H.; Agel, L.; Barlow, M.; Moron, V. Winter weather regimes in the northeast United States. J. Clim. 2016, 29, 2963–2980. [Google Scholar] [CrossRef]
- Coe, D.; Barlow, M.; Agel, L.; Colby, F.; Skinner, C.; Qian, J.-H. Clustering analysis of autumn weather regimes in the northeast United States. J. Clim. 2021, 34, 7587–7605. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Wheeler, M.C.; Hendon, H.H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Richardson, A.; Risien, C.; Shillington, F. Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr. 2003, 59, 223–239. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Mooers, C.N.K. Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. Earth Surf. 2006, 111, 3117. [Google Scholar] [CrossRef]
- Johnson, N.C.; Feldstein, S.B.; Tremblay, B. The continuum of northern hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Clim. 2008, 21, 6354–6371. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Mo, K.C.; Ghil, M. Statistical significance test for transition matrices of atmospheric Markov chains. J. Atmos. Sci. 1990, 47, 1926–1931. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M.; Qian, J.; Colby, F.; Douglas, E.; Eichler, T. Climatology of daily precipitation and extreme precipitation events in the northeast United States. J. Hydrometeorol. 2015, 16, 2537–2557. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M.; Skinner, C.; Colby, F.; Cohen, J. Four distinct northeast US heat wave circulation patterns and associated mechanisms, trends, and electric usage. npj Clim. Atmos. Sci. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Deser, C. On the teleconnectivity of the “arctic oscillation”. Geophys. Res. Lett. 2000, 27, 779–782. [Google Scholar] [CrossRef]
Top 10 Statistics Results | Progression (Length 2) | Amount | Progression (Length 3) | Amount | Progression (Length 4) | Amount |
---|---|---|---|---|---|---|
1 | 7−1 | 69 | 4−7−1 | 35 | 7−1−2−4 | 13 |
2 | 8−5 | 65 | 1−2−4 | 26 | 4−7−1−2 | 12 |
3 | 5−8 | 61 | 7−1−2 | 25 | 2−4−7−1 | 12 |
4 | 2−4 | 60 | 7−1−4 | 18 | 1−2−4−7 | 7 |
5 | 1−2 | 56 | 2−4−7 | 18 | 3−8−9−6 | 7 |
6 | 3−6 | 51 | 8−5−3 | 18 | 7−1−2−5 | 6 |
7 | 4−7 | 49 | 4−8−5 | 18 | 2−4−8−5 | 6 |
8 | 5−3 | 46 | 3−6−9 | 16 | 5−3−8−9 | 6 |
9 | 4−2 | 44 | 2−7−1 | 15 | 1−2−4−5 | 5 |
10 | 6−3 | 42 | 5−3−8 | 14 | 5−8−7−1 | 5 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|
Likelihood of Transition | ||||||||||
1 Sep–15 Oct | 1 | 10,000 | 0 | 5688 | 0 | 0 | 10,000 | 0 | 0 | 10,000 |
2 | 0 | 10,000 | 1341 | 0 | 0 | 10,000 | 0 | 0 | 10,000 | |
3 | 2061 | 1396 | 10,000 | 4290 | 9987 | 10,000 | 3402 | 6073 | 10,000 | |
4 | 0 | 0 | 1261 | 10,000 | 239 | 10,000 | 5 | 397 | 10,000 | |
5 | 0 | 0 | 9852 | 4 | 10,000 | 10,000 | 0 | 9976 | 10,000 | |
6 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | |
7 | 9266 | 0 | 3361 | 0 | 0 | 10,000 | 10,000 | 0 | 10,000 | |
8 | 0 | 0 | 9217 | 10 | 8384 | 10,000 | 9 | 10,000 | 10,000 | |
9 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | |
16 Oct–30 Nov | 1 | 10,000 | 9715 | 4010 | 5315 | 1812 | 1520 | 7570 | 8698 | 110 |
2 | 9696 | 10,000 | 569 | 9906 | 6280 | 95 | 9436 | 1037 | 23 | |
3 | 1901 | 156 | 10,000 | 1 | 0 | 211 | 121 | 0 | 0 | |
4 | 8749 | 9888 | 0 | 10,000 | 1447 | 0 | 9998 | 863 | 0 | |
5 | 361 | 4073 | 26 | 742 | 10,000 | 0 | 3724 | 265 | 0 | |
6 | 370 | 3563 | 8 | 189 | 0 | 10,000 | 462 | 0 | 2 | |
7 | 10,000 | 6842 | 12 | 9438 | 114 | 90 | 10,000 | 2192 | 16 | |
8 | 193 | 32 | 0 | 163 | 4114 | 0 | 242 | 10,000 | 0 | |
9 | 150 | 188 | 0 | 1 | 0 | 4 | 18 | 0 | 10,000 | |
Likelihood of no transition | ||||||||||
1 Sep–15 Oct | 1 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 0 |
2 | 10,000 | 0 | 8739 | 153 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | |
3 | 10,000 | 10,000 | 0 | 9862 | 10,000 | 9996 | 9754 | 10,000 | 10,000 | |
4 | 10,000 | 1012 | 9998 | 0 | 10,000 | 10,000 | 63 | 10,000 | 10,000 | |
5 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | |
6 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 0 | 10,000 | 10,000 | 10,000 | |
7 | 10,000 | 3966 | 9994 | 2563 | 10,000 | 9998 | 0 | 10,000 | 10,000 | |
8 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | |
9 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 0 | |
16 Oct–30 Nov | 1 | 0 | 2312 | 8064 | 10,000 | 9625 | 9679 | 10,000 | 2834 | 10,000 |
2 | 2333 | 0 | 9848 | 485 | 5846 | 10,000 | 3191 | 9709 | 10,000 | |
3 | 9373 | 9976 | 0 | 10,000 | 10,000 | 9878 | 9989 | 10,000 | 10,000 | |
4 | 4659 | 506 | 10,000 | 0 | 9271 | 10,000 | 16 | 9586 | 10,000 | |
5 | 10,000 | 7944 | 9984 | 9699 | 0 | 10,000 | 8150 | 9831 | 10,000 | |
6 | 10,000 | 8254 | 9996 | 9957 | 10,000 | 0 | 9931 | 10,000 | 9999 | |
7 | 0 | 10,000 | 10,000 | 2265 | 10,000 | 10,000 | 0 | 9089 | 10,000 | |
8 | 10,000 | 10,000 | 10,000 | 9937 | 6542 | 10,000 | 9973 | 0 | 10,000 | |
9 | 10,000 | 9977 | 10,000 | 10,000 | 10,000 | 9997 | 10,000 | 10,000 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, X. Features and Evolution of Autumn Weather Regimes in the Southeast China. Atmosphere 2022, 13, 1734. https://doi.org/10.3390/atmos13101734
Wang Y, Sun X. Features and Evolution of Autumn Weather Regimes in the Southeast China. Atmosphere. 2022; 13(10):1734. https://doi.org/10.3390/atmos13101734
Chicago/Turabian StyleWang, Yongdi, and Xinyu Sun. 2022. "Features and Evolution of Autumn Weather Regimes in the Southeast China" Atmosphere 13, no. 10: 1734. https://doi.org/10.3390/atmos13101734
APA StyleWang, Y., & Sun, X. (2022). Features and Evolution of Autumn Weather Regimes in the Southeast China. Atmosphere, 13(10), 1734. https://doi.org/10.3390/atmos13101734