Observations of Quasi-Periodic Electric Field Disturbances in the E Region before and during the Equatorial Plasma Bubble
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EPB | Equatorial Plasma Bubble |
FAI | Field-Aligned Irreglarities |
QP-EDs | Quasi-Periodic Electric field Disturbances |
References
- Abdu, M.A. Electrodynamics of ionospheric weather over low latitudes. Geosci. Lett. J. Asia Ocean. Geosci. Soc. (AOGS) 2016, 20163, 11. [Google Scholar] [CrossRef]
- kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd ed.; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- de Paula, E.R.; Hysell, D.L. The São Luís 30 MHz coherent scatter ionospheric radar: System description and initial results. Radio Sci. 2004, 39, RS1014. [Google Scholar] [CrossRef]
- Haerendel, G.; Eccles, J.V.; Çakir, S. Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. J. Geophys. Res. 1992, 97, 1209–1223. [Google Scholar] [CrossRef]
- Pfaff, R.F.; Sobral, J.H.A.; Abdu, M.A.; Swartz, W.E.; LaBelle, J.W.; Larsen, M.F.; Goldberg, R.A.; Schmidlin, F.J. The Guará Campaign: A series of rocket-radar investigations of the Earth’s upper atmosphere at the magnetic equator. Geophys. Res. Lett. 1997, 24, 1663–1666. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, I.S.; Reinisch, B.W.; de Souza, J.R.; Sobral, J.H.A.; Pedersen, T.R.; Medeiros, A.F.; Schuch, N.J.; de Paula, E.R.; Groves, K.M. Conjugate Point Equatorial Experiment (COPEX) campaign in Brazil: Electrodynamics highlights on spread F development conditions and day-to-day variability. J. Geophys. Res. 2009, 114, A04308. [Google Scholar] [CrossRef]
- Hysell, D.L.; Larsen, M.F.; Swenson, C.M.; Barjatya, A.; Wheeler, T.F.; Bullett, T.W.; Sarango, M.F.; Woodman, R.F.; Chau, J.L.; Sponseller, D. Rocket and Radar Investigation of Background Electrodynamics and Bottom-Type Scattering Layers at the Onset of Equatorial Spread F. Ann. Geophys. 2006, 24. [Google Scholar] [CrossRef][Green Version]
- Rodrigues, F.S.; Hysell, D.L.; de Paula, E.R. Coherent backscatter radar imaging in Brazil: Large-scale waves in the bottomside F-region at the onset of equatorial spread F. Ann. Geophys. 2009, 26, 3355–3364. [Google Scholar]
- Kelley, M.C.; Rodrigues, F.S.; Makela, J.J.; Tsunoda, R.; Roddy, P.A.; Hunton, D.E.; Retterer, J.M.; de Beaujardiere, O.; de Paula, E.R.; Ilma, R.R. C/NOFS and radar observations during a convective ionospheric storm event over South America. Geophys. Res. Lett. 2009, 36, L00C07. [Google Scholar] [CrossRef]
- de Paula, E.R.; Kherani, E.A.; Cueva, R.Y.C.; Camargo, L.P.F. Observations of 5-m irregularities in the equatorial F region over São Luís: Solar-flux dependence and seasonal variations. J. Atmos. Sol. Phys. 2011, 73, 1544–1554. [Google Scholar] [CrossRef]
- Dao, E.; Kelley, M.C.; Pfaff, R.F.; Roddy, P.A. Large-scale structures in the equatorial ionosphere and their connection to the generalized Rayleigh-Taylor instability. J. Geophys. Res. Space Phys. 2013, 118, 2618–2622. [Google Scholar] [CrossRef]
- Thampi, S.V.; Yamamoto, M.; Tsunoda, R.T.; Otsuka, Y.; Tsugawa, T.; Uemoto, J.; Ishii, M. First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite. Geophys. Res. Lett. 2009, 36, L18111. [Google Scholar] [CrossRef]
- Tsunoda, R.T. On seeding equatorial spread F during solstices. Geophys. Res. Lett. 2010, 37, L05102. [Google Scholar] [CrossRef]
- Fritts, D.C.; Abdu, M.A.; Batista, B.R.; Batista, I.S.; Batista, P.P.; Buriti, R.; Clemsha, T.; de Paula, E.R.; Fechine, B.H.; Fejer, B.; et al. The spread F Experiment (SpreadFEx): Program overview and first results. Earth Planet Space 2009, 61, 411–430. [Google Scholar] [CrossRef][Green Version]
- Abdu, M.A.; Kherani, E.A.; Batista, I.S.; de Paula, E.R.; Fritts, D.C.; Sobral, J.H.A. Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann. Geophys. Ser. Upper Atmos. Space Sci. 2009, 27, 2607–2622. [Google Scholar] [CrossRef]
- Takahashi, H.; Abdu, M.A.; Taylor, M.J.; Pautet, P.-D.; De Paula, E.; Kherani, E.A.; Medeiros, A.F.; Wrasse, C.M.; Batista, I.S.; Sobral, J.H.A.; et al. Equatorial ionosphere bottom-type spread F observed by OI 630.0 nm airglow imaging. Geophys. Res. 2010, 37, L03102. [Google Scholar] [CrossRef]
- Takahashi, H.; Taylor, M.J.; Pautet, P.-D.; Medeiros, A.F.; Gobbi, D.; Wrasse, C.M.; Fechine, J.; Abdu, M.A.; Batista, I.S.; de Paula, E.R.; et al. Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign. Ann. Geophys. 2009, 27, 1477–1487. [Google Scholar] [CrossRef]
- Taylor, M.J.; Pautet, P.-D.; Medeiros, A.F.; Buriti, R.; Fechine, J.; Fritts, D.C.; Vadas, S.L.; Takahashi, H.; São Sabbas, F.T. Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign. Ann. Geophys. 2009, 27, 461–472. [Google Scholar] [CrossRef]
- Huang, K.M.; Liu, A.Z.; Zhang, S.D.; Yi, F.; Huang, C.M.; Gong, Y.; Gan, Q.; Zhang, Y.H.; Wang, R. Simultaneous upward and downward propagating inertia-gravity waves in the MLT observed at Andes Lidar Observatory. J. Geophys. Res. Atmos. 2017, 122, 2812–2830. [Google Scholar] [CrossRef]
- Yang, V.F.G.; Batista, P.; Gobbi, D. Growth Rate of Gravity Wave Amplitudes Observed in Sodium Lidar Density Profiles and Nightglow Image Data. Atmosphere 2019, 10, 750. [Google Scholar] [CrossRef]
- Moro, J.; Resende, L.C.A.; Denardini, C.M.; Xu, J.; Batista, I.S.; Andrioli, V.F.; Carrasco, A.J.; Batista, P.P.; Schuch, N.J. Equatorial E region electric fields and sporadic E layer responses to the recovery phase of the November 2004 geomagnetic storm. J. Geophys. Res. Space Phys. 2017, 122, 12517–12533. [Google Scholar] [CrossRef]
- Woodman, R.F.; Chau, J.L. Equatorial quasiperiodic echoes from field-aligned irregularities observed over Jicamarca. Geophys. Res. Lett. 2001, 28, 207. [Google Scholar] [CrossRef]
- Kheran, E.A.; de Paula, E.R.; Cueva, R.; Camargo, L. Observations of nighttime equatorial-upper-E-valley region irregular structures from Sao Luis radar and their occurrence statistics: A manifestation of vertical coupling between E and F regions. J. Atmos. Sol.-Terr. Phys. 2012, 75, 64–70. [Google Scholar] [CrossRef]
- Aveiro, H.C.; Denardini, C.M.; Abdu, M.A. Climatology of gravity waves—Induced electric fields in the equatorial E region. J. Geophys. Res. 2009, 114, A11308. [Google Scholar] [CrossRef]
- Woodman, R.F. Spectral moment estimation in MST radar. Radio Sci. 1985, 103, 1185. [Google Scholar] [CrossRef]
- Choudhary, K.R.; Mahajan, K.K. Tropical E-region field aligned irregularities: Simulatneous observations of continu- ous and quasiperiodic echoes. J. Geophys. Res. 1999, 104, 2613–2619. [Google Scholar] [CrossRef]
- Chau, J.L.; Woodman, R.F. Low-latitude quasiperiodic echoes observed with the Piura VHF radar in the E-region. Geo-Phys. Res. Lett. 1999, 26, 2167–2170. [Google Scholar] [CrossRef]
- Patra, A.K.; Rao, P.B. High-resolution radar measurements of turbulent structure in the low-latitude E-region. J. Geophys. Res. 1999, 104, 667–673. [Google Scholar] [CrossRef]
- Kherani, E.A.; Bharuthram, R.; Maharaj, S.K. Growth of plasma waves of scales longer than 10 km by gradientdrift instability in the E region of equatorial ionosphere. Phys. Plasmas 2018, 25, 072902. [Google Scholar] [CrossRef]
- Kherani, E.A.; Abdu, M.A.; Fritts, D.C.; de Paula, E.R. The acoustic gravity wave induced disturbances in the equatorial Ionosphere. In Aeronomy of the Earth’s Atmosphere and Ionosphere; Springer-IAGA special issue; Abdu, M.A., Pancheva, D., Bhattacharyya, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Abdu, M.A.; de Souza, J.R.; Kherani, E.A.; Batista, I.S.; MacDougall, J.W.; Sobral, J.H.A. Wave structure and polarization electric field development in the bottomside F layer leading to postsunset equatorial spread F. J. Geophys. Res. Space Phys. 2015, 120, 6930–6940. [Google Scholar] [CrossRef]
Radar Location | 2.3° S, 44° W, 1.3° dip |
Antenna Half-Power-Full-Beam-Width (E-W) | 10° |
Inter-Pulse-Period (IPP) | 1400 km (9.34 ms) |
Altitude Coverage | 87.5–1267.5 km |
Altitude Resolution | 2.5 km |
Coherent-Integration | 1 |
Velocity Coverage | ±250 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kherani, E.A.; de Paula, E.R. Observations of Quasi-Periodic Electric Field Disturbances in the E Region before and during the Equatorial Plasma Bubble. Atmosphere 2021, 12, 1106. https://doi.org/10.3390/atmos12091106
Kherani EA, de Paula ER. Observations of Quasi-Periodic Electric Field Disturbances in the E Region before and during the Equatorial Plasma Bubble. Atmosphere. 2021; 12(9):1106. https://doi.org/10.3390/atmos12091106
Chicago/Turabian StyleKherani, Esfhan A., and Eurico R. de Paula. 2021. "Observations of Quasi-Periodic Electric Field Disturbances in the E Region before and during the Equatorial Plasma Bubble" Atmosphere 12, no. 9: 1106. https://doi.org/10.3390/atmos12091106
APA StyleKherani, E. A., & de Paula, E. R. (2021). Observations of Quasi-Periodic Electric Field Disturbances in the E Region before and during the Equatorial Plasma Bubble. Atmosphere, 12(9), 1106. https://doi.org/10.3390/atmos12091106