The Potential Ozone Impacts of Landfills
Abstract
1. Introduction
2. Methods
2.1. The MicroFACT Air Quality Model
2.2. Model Domains and Resolution
2.3. Meteorological and Chemical Assumptions
2.4. Hypothetical Landfill Emissions
3. Results
3.1. Model Scenarios
3.2. Near-Source Simulation
3.3. Far-Field Simulation
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basic Information about Landfill Gas. Available online: https://www.epa.gov/lmop/basic-information-about-landfill-gas (accessed on 24 March 2021).
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Intergovernmental panel on climate change (IPCC). In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 509. [Google Scholar]
- West, J.J.; Fiore, A.M. Management of tropospheric ozone by reducing methane emissions. Environ. Sci. Technol. 2005, 39, 4685–4691. [Google Scholar] [CrossRef]
- U.S. Code of Federal Regulations, Title 40, Chapter I, Subchapter C, Part 51, Subpart F, Section 51.100. Available online: https:/www.ecfr.gov/cgi-bin/text-idx?SID=e0c5c3051512c0d6b780c0a78597a2d7&mc=true&node=pt40.2.51&rgn=div5#sp40.2.51.f (accessed on 2 July 2021).
- McKain, K.; Down, A.; Raciti, S.M.; Budney, J.; Hutyra, L.R.; Floerchinger, C.; Herndon, S.C.; Nehrkorn, T.; Zahniser, M.S.; Jackson, R.B.; et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proc. Natl. Acad. Sci. USA 2015, 112, 1941–1946. [Google Scholar] [CrossRef]
- Von Fischer, J.C.; Cooley, D.; Chamberlain, S.; Gaylord, A.; Griebenow, C.J.; Hamburg, S.P.; Salo, J.; Schumacher, R.; Theobald, D.; Ham, J. Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks. Environ. Sci. Technol. 2017, 51, 4091–4099. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.G.; Ackley, R.; Crosson, E.R.; Down, A.; Hutyra, L.R.; Brondfield, M.; Karr, J.D.; Zhao, K.; Jackson, R.B. Mapping urban pipeline leaks: Methane leaks across Boston. Environ. Pollut. 2013, 173, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Schiermeier, Q. Global methane levels soar to record high. Nature 2020. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide; EPA-600/R-05/047; Office of Research and Development: Washington, DC, USA, 2005.
- Duren, R.; Thorpe, A.; McCubbin, I. The California Methane Survey; CEC-500-2020-047; California Energy Commission: Sacramento, CA, USA, 2020. [Google Scholar]
- Duren, R.; Thorpe, A.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.; Thompson, D.R.; Conley, S.; Colombi, N.; et al. California’s methane super-emitters. Nature 2019, 575, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Janson, J.L.; Yesiller, N.; Manheim, D.C. Estimation and Comparison of Methane, Nitrous Oxide, and Trace Volatile Organic Compound Emissions and Gas Collection System Efficiencies in California Landfills; California Polytechnic State University: San Luis Obispo, CA, USA, 2020. [Google Scholar]
- Olaguer, E.P.; Rappenglück, B.; Lefer, B.; Stutz, J.; Dibb, J.; Griffin, R.; Brune, W.H.; Shauck, M.; Buhr, M.; Jeffries, H.; et al. Deciphering the role of radical precursors during the Second Texas Air Quality Study. J. Air Waste Manag. Assoc. 2009, 59, 1258–1277. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Olaguer, E.P.; Kolb, C.E.; Lefer, B.; Rappenglück, B.; Zhang, R.; Pinto, J.P. Overview of the SHARP campaign: Motivation, design, and major outcomes. J. Geophys. Res. Atmos. 2014, 119, 2597–2610. [Google Scholar] [CrossRef]
- Ratzman, K. Formaldehyde Emissions from Landfill Gas and Natural Gas Engines; Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxics Workshop: Towson, MD, USA, 2018. [Google Scholar]
- Cestone, R.M. Formaldehyde emissions from combustion sources and its contributions toward volatile organic compounds and hazardous air pollutants. In Proceedings of the New Jersey Water Environment Association Conference, Atlantic City, NJ, USA, 8 May 2018. [Google Scholar]
- Torres, V.; Allen, D.; Herndon, S. TCEQ 2010 Flare Study Report; Houston-Galveston Area Council: Houston, TX, USA, 2011. [Google Scholar]
- Olaguer, E.P. Atmospheric Impacts of the Oil and Gas Industry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 124–126. [Google Scholar]
- U.S. Environmental Protection Agency. Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM2.5 under the PSD Permitting Program; EPA-454/R-19-003; Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2019.
- Olaguer, E.P. Adjoint model enhanced plume reconstruction from tomographic remote sensing measurements. Atmos. Environ. 2011, 45, 6980–6986. [Google Scholar] [CrossRef]
- Olaguer, E.P. The potential near source ozone impacts of upstream oil and gas industry emissions. J. Air Waste Manag. Assoc. 2012, 62, 966–977. [Google Scholar] [CrossRef]
- Olaguer, E.P. Near source air quality impacts of large olefin flares. J. Air Waste Manag. Assoc. 2012, 62, 978–988. [Google Scholar] [CrossRef]
- Olaguer, E.P. Application of an adjoint neighborhood scale chemistry transport model to the attribution of primary formaldehyde at Lynchburg Ferry during TexAQS II. J. Geophys. Res. Atmos. 2013, 118, 4936–4946. [Google Scholar] [CrossRef]
- Colella, P.; Woodward, P.R. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 1984, 54, 174–201. [Google Scholar] [CrossRef]
- Bott, A. A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Weather Rev. 1989, 117, 1006–1015. [Google Scholar] [CrossRef]
- Smolarkiewicz, P.K. A fully multi-dimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys. 1984, 54, 325–362. [Google Scholar] [CrossRef]
- Jet Propulsion Laboratory (JPL). Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 19; Publication 19-5; NASA JPL: Pasadena, CA, USA, 2020. [Google Scholar]
- Jet Propulsion Laboratory (JPL). Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Publication 06-2; NASA JPL: Pasadena, CA, USA, 2006. [Google Scholar]
- Atkinson, R.A.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Kerr, J.A.; Rossi, M.J.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. 2010. Available online: http://iupac.pole-ether.fr (accessed on 26 March 2021).
- Ammann, M.; Cox, R.A.; Crowley, J.N.; Jenkin, M.E.; Mellouki, A.; Rossi, M.J.; Troe, J.; Wallington, T.J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—heterogeneous reactions with liquid substrates. Atmos. Chem. Phys. 2013, 13, 8045–8228. [Google Scholar] [CrossRef]
- Fu, X.; Wang, T.; Zhang, L.; Li, Q.; Wang, Z.; Xia, M.; Yun, H.; Wang, W.; Yu, C.; Yue, D.; et al. The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China. Atmos. Chem. Phys. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Hertel, O.; Berkowicz, R.; Christensen, J. Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ. 1993, 27A, 2591–2611. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Yarwood, G.; Whitten, G.Z.; Jung, J.; Heo, G.; Allen, D.T. Development, Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6); Texas Commission on Environmental Quality: Austin, TX, USA, 2010. [Google Scholar]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G.Z. Updates to the Carbon Bond Mechanism: CB05; Environmental Protection Agency: Research Triangle Park, NC, USA, 2005. [Google Scholar]
- Byun, D.W.; Ching, J.K.S. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; EPA/600/R-99/030 (NTIS PB2000-100561); Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Singh, B.; Hansen, B.S.; Brown, M.J.; Pardyjak, E.R. Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environ. Fluid Mech. 2008, 8, 281–312. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4; NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen differenzengleichungen der mathematischen physic. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Zhang, L.; Brook, J.R.; Vet, R. A revised parameterization for gaseous dry deposition in air-quality. Atmos. Chem. Phys. 2003, 3, 2067–2082. [Google Scholar] [CrossRef]
- Zhang, L.; Jacob, D.J.; Knipping, E.M.; Kumar, N.; Munger, J.W.; Carouge, C.C.; van Donkelaar, A.; Wang, Y.X.; Chen, D. Nitrogen deposition to the United States: Distribution, sources, and processes. Atmos. Chem. Phys. 2012, 12, 4539–4554. [Google Scholar] [CrossRef]
- Kleffmann, J.; Kurtenbach, R.; Lörzer, J.C.; Wiesen, P.; Kalthoff, N.; Vogel, N.; Vogel, B. Measured and simulated vertical profiles of nitrous acid. Part I: Field measurements. Atmos. Environ. 2003, 37, 2949–2955. [Google Scholar] [CrossRef]
- Koplitz, S.; Simon, H.; Henderson, B.; Liljegren, J.; Tonneson, G.; Whitehill, A.; Wells, B. Changes in ozone chemical sensitivity in the US from 2007 to 2016. 2021. manuscript in preparation. [Google Scholar]
- Brook, J.R.; Makar, P.A.; Sills, D.M.L.; Hayden, K.L.; McLaren, R. Exploring the nature of air quality over southwestern Ontario: Main findings from the Border Air Quality and Meteorology Study. Atmos. Chem. Phys. 2013, 13, 10461–10482. [Google Scholar] [CrossRef]
- Stroud, C.A.; Ren, S.; Zhang, J.; Moran, M.; Akingunola, A.; Makar, P.; Munoz, R.A.; Leroyer, S.; Bélair, S.; Sills, D.; et al. Chemical analysis of surface-level ozone exceedances during the 2015 Pan American Games. Atmosphere 2020, 11, 572. [Google Scholar] [CrossRef]
- Stroud, C.A.; (Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada). Personal communication, 2021.
- Michigan Department of Environment, Great Lakes, and Energy (EGLE). Air Quality Annual Report 2019; EGLE: Lansing, MI, USA, 2020; p. 112.
- Liu, Z.; Cui, Y.; He, Q.; Guo, L.; Gao, X.; Feng, Y.; Wang, Y.; Wang, X. Seasonal variations of carbonyls and their contributions to the ozone formation in urban atmosphere of Taiyuan, China. Atmosphere 2021, 12, 510. [Google Scholar] [CrossRef]
- McDonald, B.C.; Joost, A.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef]
- Seltzer, K.M.; Pennington, E.; Rao, V.; Murphy, B.N.; Strum, M.; Isaacs, K.K.; Pye, H.O.T. Reactive organic carbon emissions from volatile chemical products. Atmos. Chem. Phys. 2021, 21, 5079–5100. [Google Scholar] [CrossRef]
- Michigan-Ontario Ozone Source Experiment (MOOSE). Available online: https://www-air.larc.nasa.gov/missions/moose/index.html (accessed on 27 May 2021).
Time (LST) | Pressure (Pa) | Temperature (K) | Relative Humidity |
---|---|---|---|
10:00 | 99,271 | 301.74 | 0.54027 |
11:00 | 99,235 | 303.13 | 0.47248 |
12:00 | 99,206 | 304.19 | 0.43763 |
13:00 | 99,174 | 304.84 | 0.41445 |
14:00 | 99,127 | 305.05 | 0.41848 |
15:00 | 99,081 | 305.03 | 0.43777 |
16:00 | 99,048 | 304.92 | 0.46994 |
17:00 | 99,027 | 304.66 | 0.49497 |
10:00–18:00 | 99,146 | 304.20 | 0.46075 |
Chemical Species | Symbol | Boundary Condition (ppb) | Deposition Velocity (cm/s) |
---|---|---|---|
Nitric Oxide | NO | 0.793 | |
Nitrogen Dioxide | NO2 | 3.56 | 0.36 |
Ozone | O3 | 70.3 | 0.42 |
Nitrous Acid | HONO | 0.0576 | 1.9 |
Formaldehyde | HCHO | 2.84 | 0.54 |
Carbon Monoxide | CO | 260 | |
Ethene | C2H4 | 0.734 | |
Propene 1 | C3H6 | 0.313 | |
1,3-Butadiene 1 | C4H6 | 0.020 | |
1-Butene 1 | BUT1ENE | 0.020 | |
2-Butenes 2 | BUT2ENE | 0.075 | |
Isobutene 1 | IBUTENE | 0.020 | |
Isoprene | ISOP | 0.804 | |
Toluene | TOL | 0.480 | |
Xylenes | XYL | 0.255 | |
Organic Nitrates | RNO3 | 0.701 | 0.32 |
Paraffinic Bond | PAR | 27.9 | |
Acetaldehyde | CH3CHO | 1.09 | 0.2 |
Methacrolein + Methylvinylketone | ISPD | 0.508 | 0.2 |
Peroxyacetyl Nitrate | PAN | 0.785 | 0.27 |
Methane | CH4 | 1904 | |
Methanol | MEOH | 2.20 | 0.7 |
Ethanol | ETOH | 0.697 | 0.6 |
Nitric Acid | HNO3 | 2.49 | 2.7 |
Terpenes | TERP | 0.0377 | |
Ethane | C2H6 | 1.58 | |
Ketone Bond | KET | 5.42 | |
Glyoxal | GLY | 0.165 | |
Methyl Glyoxal | MGLY | 0.147 | 0.2 |
Unsaturated Aldehyde from ARD 3 | OPEN | 0.0234 | |
Unsaturated Ketone from ARD 3 | XOPN | 0.0165 | |
Cresol | CRESOL | 0.0191 | 0.2 |
Higher Aldehyde | ALDX | 0.596 | |
Higher Peroxyacyl Nitrate | PANX | 0.290 | 0.4 |
NO3 + N2O5 | NO3X | 0.000696 | 2.7 |
NO | NO2 | HONO | HCHO | CO | C2H4 | C3H6 | MEOH |
---|---|---|---|---|---|---|---|
100.55 | 11.17 | 0.89 | 22.27 | 126.45 | 2.22 | 0.20 | 0.56 |
PAR | C2H6 | TOL | XYL | ETOH | KET |
---|---|---|---|---|---|
86.9 | 7.76 | 4.54 | 0.37 | 0.36 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaguer, E.P. The Potential Ozone Impacts of Landfills. Atmosphere 2021, 12, 877. https://doi.org/10.3390/atmos12070877
Olaguer EP. The Potential Ozone Impacts of Landfills. Atmosphere. 2021; 12(7):877. https://doi.org/10.3390/atmos12070877
Chicago/Turabian StyleOlaguer, Eduardo P. 2021. "The Potential Ozone Impacts of Landfills" Atmosphere 12, no. 7: 877. https://doi.org/10.3390/atmos12070877
APA StyleOlaguer, E. P. (2021). The Potential Ozone Impacts of Landfills. Atmosphere, 12(7), 877. https://doi.org/10.3390/atmos12070877