Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements Location
2.2. OP-FTIR Instrumentation
2.3. Data Processing and Gas Retrievals
2.4. Calculating Enhancement above Background, Daily Results, and Diurnal Variation
3. Results and Discussion
3.1. Daily Mole Fractions and Enhancements above Background
3.2. Changes in Diurnal Variations
3.3. Changes in Local Traffic and Gas Enhancement from Background
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinello, S.; Butturi, M.A.; Gamberini, R. How changes in human activities during the lockdown impacted air quality parameters: A review. Environ. Prog. Sustain. Energy 2021, e13672. [Google Scholar] [CrossRef]
- Forster, P.; Forster, H.; Evans, M.; Gidden, M.; Jones, C.; Keller, C.; Lamboll, R.; Quéré, C.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang. 2020, 10, 913–919. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef]
- Field, R.D.; Hickman, J.E.; Geogdzhayev, I.V.; Tsigaridis, K.; Bauer, S.E. Changes in satellite retrievals of atmospheric composition over eastern China during the 2020 COVID-19 lockdowns. Atmos. Chem. Phys. Discuss. 2020, 2020. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H.; Gusev, A.; Shpilevskaya, N. Impact assessment of COVID-19 on variations of SO2, NO2, CO and AOD over east China. Aerosol Air Qual. Res. 2020, 20, 1530–1540. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Anenberg, S.C.; Griffin, D.; McLinden, C.A.; Lu, Z.; Streets, D.G. Disentangling the Impact of the COVID-19 Lockdowns on Urban NO2 From Natural Variability. Geophys. Res. Lett. 2020, 47, e2020GL089269. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Kamarul Zaman, N.A.F.; Kaskaoutis, D.G.; Latif, M.T. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Total Environ. 2020, 736, 139658. [Google Scholar] [CrossRef] [PubMed]
- Koukouli, M.E.; Skoulidou, I.; Karavias, A.; Parcharidis, I.; Balis, D.; Manders, A.; Segers, A.; Eskes, H.; van Geffen, J. Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19. Atmos. Chem. Phys. 2021, 21, 1759–1774. [Google Scholar] [CrossRef]
- Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Duffy, D.Q.; Little, M.M.; Yang, C. Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Sci. Total Environ. 2021, 750, 141592. [Google Scholar] [CrossRef]
- Metya, A.; Dagupta, P.; Halder, S.; Chakraborty, S.; Tiwari, Y. COVID-19 lockdowns improve air quality in the South-East Asian regions, as seen by the Remote Sens. satellites. Aerosol Air Qual. Res. 2020, 20, 1772–1782. [Google Scholar] [CrossRef]
- Soni, M.; Verma, S.; Jethava, H.; Payra, S.; Lamsal, L.; Gupta, P.; Singh, J. Impact of COVID-19 on the Air Quality over China and India Using Long-term (2009-2020) Multi-satellite Data. Aerosol Air Qual. Res. 2021, 21, 200295. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef] [PubMed]
- Anil, I.; Alagha, O. The impact of COVID-19 lockdown on the air quality of Eastern Province, Saudi Arabia. Air Qual. Atmos. Health 2020. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Bedi, J.S.; Dhaka, P.; Vijay, D.; Aulakh, R.S.; Gill, J.P.S. Assessment of Air Quality Changes in the Four Metropolitan Cities of India during COVID-19 Pandemic Lockdown. Aerosol Air Qual. Res. 2020, 20, 2062–2070. [Google Scholar] [CrossRef]
- Broomandi, P.; Karaca, F.; Nikfal, A.; Jahanbakhshi, A.; Tamjidi, M.; Kim, J.R. Impact of COVID-19 Event on the Air Quality in Iran. Aerosol Air Qual. Res. 2020, 20, 1793–1804. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.; da Silva, C.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729. [Google Scholar] [CrossRef]
- Grivas, G.; Athanasopoulou, E.; Kakouri, A.; Bailey, J.; Liakakou, E.; Stavroulas, I.; Kalkavouras, P.; Bougiatioti, A.; Kaskaoutis, D.G.; Ramonet, M.; et al. Integrating in situ Measurements and City Scale Modelling to Assess the COVID–19 Lockdown Effects on Emissions and Air Quality in Athens, Greece. Atmosphere 2020, 11, 1174. [Google Scholar] [CrossRef]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732. [Google Scholar] [CrossRef]
- Lee, J.D.; Drysdale, W.S.; Finch, D.P.; Wilde, S.E.; Palmer, P.I. UK surface NO2 levels dropped by 42% during the COVID-19 lockdown: Impact on surface O3. Atmos. Chem. Phys. 2020, 20, 15743–15759. [Google Scholar] [CrossRef]
- Mor, S.; Kumar, S.; Singh, T.; Dogra, S.; Pandey, V.; Ravindra, K. Impact of COVID-19 lockdown on air quality in Chandigarh, India: Understanding the emission sources during controlled anthropogenic activities. Chemosphere 2021, 263. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Talbot, N.; Salmond, J.; Dirks, K.; Xie, S.; Davy, P. Implications for air quality management of changes in air quality during lockdown in Auckland (New Zealand) in response to the 2020 SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 746, 141129. [Google Scholar] [CrossRef]
- Ropkins, K.; Tate, J. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2021, 754. [Google Scholar] [CrossRef]
- Shakoor, A.; Chen, X.; Farooq, T.; Shahzad, U.; Ashraf, F.; Rehman, A.; Sahar, N.; Yan, W. Fluctuations in environmental pollutants and air quality during the lockdown in the USA and China: Two sides of COVID-19 pandemic. Air Qual. Atmos. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Brasseur, G.P. The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVID-19 Outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266. [Google Scholar] [CrossRef]
- Wyche, K.; Nichols, M.; Parfitt, H.; Beckett, P.; Gregg, D.; Smallbone, K.; Monks, P. Changes in ambient air quality and atmospheric composition and reactivity in the South East of the UK as a result of the COVID-19 lockdown. Sci. Total Environ. 2021, 755, 142526. [Google Scholar] [CrossRef]
- Xiang, J.; Austin, E.; Gould, T.; Larson, T.; Shirai, J.; Liu, Y.; Marshall, J.; Seto, E. Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city. Sci. Total Environ. 2020, 747, 141325. [Google Scholar] [CrossRef]
- Yuan, Q.; Qi, B.; Hu, D.; Wang, J.; Zhang, J.; Yang, H.; Zhang, S.; Liu, L.; Xu, L.; Li, W. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 2021, 751, 141820. [Google Scholar] [CrossRef] [PubMed]
- Zalakeviciute, R.; Vasquez, R.; Bayas, D.; Buenano, A.; Mejia, D.; Zegarra, R.; Diaz, V.; Lamb, B. Drastic Improvements in Air Quality in Ecuador during the COVID-19 Outbreak. Aerosol Air Qual. Res. 2020, 20, 1783–1792. [Google Scholar] [CrossRef]
- Zangari, S.; Hill, D.T.; Charette, A.T.; Mirowsky, J.E. Air quality changes in New York City during the COVID-19 pandemic. Sci. Total Environ. 2020, 742, 140496. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, K.; Xu, X.; Shen, H.; Zhu, X.; Zhang, Y.; Hu, Y.; Shen, G. Substantial changes in nitrogen dioxide and ozone after excluding meteorological impacts during the COVID-19 outbreak in Mainland China. Environ. Sci. Tech. Lett. 2020, 7, 402–408. [Google Scholar] [CrossRef]
- Kroll, J.; Heald, C.; Cappa, C.; Farmer, D.; Fry, J.; Murphy, J.; Steiner, A. The complex chemical effects of COVID-19 shutdowns on air quality. Nat. Chem. 2020, 12, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.; Li, G.; Seinfeld, J. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Steinbrecht, W.; Kubistin, D.; Plass-Dülmer, C.; Davies, J.; Tarasick, D.W.; Gathen, P.V.D.; Deckelmann, H.; Jepsen, N.; Kivi, R.; Lyall, N.; et al. COVID-19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. Geophys. Res. Lett. 2021, 48, e2020GL091987. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The impact of the control measures during the COVID-19 outbreak on air pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Kumar, P.; Molter, A.; Zhang, Q.; Basu, B.; Basu, A.; Pilla, F. Examining the status of improved air quality in world cities due to COVID-19 led temporary reduction in anthropogenic emissions. Environ. Res. 2021, 196. [Google Scholar] [CrossRef] [PubMed]
- Elshorbany, Y.F.; Kapper, H.C.; Ziemke, J.R.; Parr, S.A. The Status of Air Quality in the United States During the COVID-19 Pandemic: A Remote Sensing Perspective. Remote Sens. 2021, 13, 369. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef]
- Marinello, S.; Lolli, F.; Gamberini, R. The Impact of the COVID-19 emergency on local vehicular traffic and its consequences for the environment: The case of the city of Reggio Emilia (Italy). Sustainability 2021, 13, 118. [Google Scholar] [CrossRef]
- Tanzer-Gruener, R.; Li, J.; Eilenberg, S.R.; Robinson, A.L.; Presto, A.A. Impacts of modifiable factors on ambient air pollution: A case study of COVID-19 shutdowns. Environ. Sci. Tech. Lett. 2020, 7, 554–559. [Google Scholar] [CrossRef]
- Wu, C.L.; Wang, H.W.; Cai, W.J.; He, H.D.; Ni, A.N.; Peng, Z.R. Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China. Build. Environ. 2021, 194. [Google Scholar] [CrossRef] [PubMed]
- Adams, M. Air pollution in Ontario, Canada during the COVID-19 State of Emergency. Sci. Total Environ. 2020, 742. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.; McLinden, C.; Racine, J.; Moran, M.; Fioletov, V.; Pavlovic, R.; Mashayekhi, R.; Zhao, X.; Eskes, H. Assessing the impact of corona-virus-19 on nitrogen dioxide levels over southern Ontario, Canada. Remote Sens. 2020, 12, 4112. [Google Scholar] [CrossRef]
- Tian, X.; An, C.; Chen, Z.; Tian, Z. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 2021, 765. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.; Crosman, E.; Jacques, A.; Fasoli, B.; Leclair-Marzolf, L.; Horel, J.; Bowling, D.; Ehleringer, J.; Lin, J. Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform. Atmos. Environ. 2018, 187, 9–23. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Toon, G.C.; Keppel-Aleks, G.; Yavin, Y.G. Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Ware, J.; Kort, E.A.; Duren, R.; Mueller, K.L.; Verhulst, K.; Yadav, V. Detecting Urban Emissions Changes and Events with a Near-Real-Time-Capable Inversion System. J. Geophys. Res. Atmos. 2019, 124, 5117–5130. [Google Scholar] [CrossRef]
- City of Toronto. 2018 Greenhouse Gas Emissions Inventory. 2018. Available online: https://www.toronto.ca/wp-content/uploads/2020/12/9525-2018-GHG-Inventory-Report-Final-Published.pdf (accessed on 16 April 2021).
- City of Toronto. TransformTO: 2019 Implementation Update. 2020. Available online: https://www.toronto.ca/wp-content/uploads/2020/11/96aa-TTO-2019-Update-June2020-FINAL-AODA.pdf (accessed on 27 April 2021).
- Deutscher, N.M.; Naylor, T.A.; Caldow, C.G.R.; McDougall, H.L.; Carter, A.G.; Griffith, D.W.T. Performance of an open-path near-infrared measurement system for measurements of CO2 and CH4 during extended field trials. Atmos. Meas. Tech. 2021, 14, 3119–3130. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Pöhler, D.; Schmitt, S.; Hammer, S.; Vardag, S.N.; Platt, U. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy. Atmos. Meas. Tech. 2018, 11, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Grutter, M.; Flores, E.; Basaldud, R.; Ruiz-Suarez, L.G. Open-path FTIR spectroscopic studies of the trace gases over Mexico City. Atmos. Ocean. Opt. 2003, 16, 232–236. [Google Scholar]
- Wiacek, A.; Li, L.; Tobin, K.; Mitchell, M. Characterization of trace gas emissions at an intermediate port. Atmos. Chem. Phys. 2018, 18, 13787–13812. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Staebler, R.M.; Moussa, S.G.; Su, Y.; Munoz, T.; Stroud, C.; Zhang, J.; Moran, M.D. Long-path measurements of pollutants and micrometeorology over Highway 401 in Toronto. Atmos. Chem. Phys. 2017, 17, 14119–14143. [Google Scholar] [CrossRef] [Green Version]
- Byrne, B.; Strong, K.; Colebatch, O.; You, Y.; Wunch, D.; Ars, S.; Jones, D.B.A.; Fogal, P.; Mittermeier, R.L.; Worthy, D.; et al. Monitoring urban greenhouse gases using open-path Fourier transform spectroscopy. Atmos. Ocean 2020, 58, 25–45. [Google Scholar] [CrossRef]
- Geddes, A.; Robinson, J.; Smale, D. Python-based dynamic scheduling assistant for atmospheric measurements by Bruker instruments using OPUS. Appl. Opt. 2018, 57, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.W.T. Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra. Appl. Spectrosc. 1996, 50, 59–70. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hill, C.; Kochanov, R.; Tan, Y.; Bernath, P.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C++; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Griffith, D.W.T.; Deutscher, N.M.; Caldow, C.; Kettlewell, G.; Riggenbach, M.; Hammer, S. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmos. Meas. Tech. 2012, 5, 2481–2498. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton University Press: Princeton, NJ, USA, 1999; pp. 199–211. [Google Scholar]
- Ammoura, L.; Xueref-Remy, I.; Vogel, F.; Gros, V.; Baudic, A.; Bonsang, B.; Delmotte, M.; Té, Y.; Chevallier, F. Exploiting stagnant conditions to derive robust emission ratio estimates for CO2, CO and volatile organic compounds in Paris. Atmos. Chem. Phys. 2016, 16, 15653–15664. [Google Scholar] [CrossRef] [Green Version]
- Bares, R.; Lin, J.; Hoch, S.; Baasandorj, M.; Mendoza, D.; Fasoli, B.; Mitchell, L.; Catharine, D.; Stephens, B. The wintertime covariation of CO2 and criteria pollutants in an urban valley of the Western United States. J. Geophys. Res. Atmos. 2018, 123, 2684–2703. [Google Scholar] [CrossRef]
- Super, I.; Denier van der Gon, H.A.C.; van der Molen, M.K.; Sterk, H.A.M.; Hensen, A.; Peters, W. A multi-model approach to monitor emissions of CO2 and CO from an urban–industrial complex. Atmos. Chem. Phys. 2017, 17, 13297–13316. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Jackson, R.; Jones, M.; Smith, A.; Abernethy, S.; Andrew, R.; De-Gol, A.; Willis, D.; Shan, Y.; Canadell, J.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Liu, D.; Sun, W.; Zeng, N.; Han, P.; Yao, B.; Liu, Z.; Wang, P.; Zheng, K.; Mei, H.; Cai, Q. Observed decreases in on-road CO2 concentrations in Beijing during COVID-19 restrictions. Atmos. Chem. Phys. 2021, 21, 4599–4614. [Google Scholar] [CrossRef]
- Chevallier, F.; Zheng, B.; Broquet, G.; Ciais, P.; Liu, Z.; Davis, S.; Deng, Z.; Wang, Y.; Bréon, F.M.; O’Dell, C. Local anomalies in the column-averaged dry air mole fractions of carbon dioxide across the globe during the first months of the coronavirus recession. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Buchwitz, M.; Reuter, M.; Noël, S.; Bramstedt, K.; Schneising, O.; Hilker, M.; Fuentes Andrade, B.; Bovensmann, H.; Burrows, J.P.; Di Noia, A.; et al. Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals. Atmos. Meas. Tech. 2021, 14, 2141–2166. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Canada’s Air Pollutant Emission Inventory. 2018. Available online: https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131 (accessed on 16 April 2021).
- Pugliese, S.C.; Murphy, J.G.; Vogel, F.R.; Moran, M.D.; Zhang, J.; Zheng, Q.; Stroud, C.A.; Ren, S.; Worthy, D.; Broquet, G. High-resolution quantification of atmospheric CO2 mixing ratios in the Greater Toronto Area, Canada. Atmos. Chem. Phys. 2018, 18, 3387–3401. [Google Scholar] [CrossRef] [Green Version]
- Sargent, M.; Barrera, Y.; Nehrkorn, T.; Hutyra, L.R.; Gately, C.K.; Jones, T.; McKain, K.; Sweeney, C.; Hegarty, J.; Hardiman, B.; et al. Anthropogenic and biogenic CO2 fluxes in the Boston urban region. Proc. Natl. Acad. Sci. USA 2018, 115, 7491–7496. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.J.; Kim, J.; Fitzmaurice, H.; Newman, C.; Worthington, K.; Chan, K.; Wooldridge, P.J.; Köehler, P.; Frankenberg, C.; Cohen, R.C. Observed impacts of COVID-19 on urban CO2 emissions. Geophys. Res. Lett. 2020, 47, e2020GL090037. [Google Scholar] [CrossRef]
- You, Y.; Byrne, B.; Colebatch, O.; Mittermeier, R.L.; Vogel, F.; Strong, K. Replication Data for: Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy; Scholars Portal Dataverse, V1. 2021. Available online: https://doi.org/10.5683/SP2/SLNXHF (accessed on 29 June 2021).
Gases Fitted | Interfering Gases | Spectral Window (cm) |
---|---|---|
CO, CO, NO | HO | 2141–2235 |
CH | HO | 2900–3027 |
HO, HDO | CH | 2713–2952 |
Year | Period 1 | Traffic Counts/hr | Period 2 | Traffic Counts/hr |
---|---|---|---|---|
2018 | 13 January to 13 March | 7343 | 14 March to 18 May | 7345 |
2019 | 13 January to 13 March | 6892 | 14 March to 18 May | 7801 |
2020 | 13 January to 13 March | 7450 | 14 March to 18 May | 4747 |
2021 | Period 3 | |||
14 January to 7 March | 6175 * |
Periods | CO (ppb) | CO (ppb) | CO (ppm) | CO (ppm) | CH (ppb) | CH (ppb) |
---|---|---|---|---|---|---|
2018 | ||||||
Period 1 | 176 | 35.1 | 427 | 12.3 | 2160 | 141.9 |
Period 2 | 167 | 33.5 | 425 | 10.4 | 2063 | 82.4 |
Difference, P2-P1 | Not sig | Not sig | Not sig | Not sig | −96.8 (−149.4, −44.3) | −59.5 (−102.2, −16.8) |
Relative difference (%) | NA | NA | NA | NA | −4.5 ± 2.4% | −42 ± 30% |
2019 | ||||||
Period 1 | 196 | 53.3 | 430 | 10.8 | 2035 | 48.0 |
Period 2 | 174 | 48.0 | 424 | 11.2 | 2056 | 75.7 |
Difference, P2-P1 | −22.2 (−39.9, −4.6) | Not sig | −5.5 (−10.1, −0.9) | Not sig | Not sig | 27.7 (3.0, 52.3) |
Relative difference (%) | −11 ± 9% | NA | −1.3 ± 1.1% | NA | NA | 58 ± 51% |
2020 | ||||||
Period 1 | 179 | 44.6 | 436 | 10.7 | 2088 | 79.7 |
Period 2 | 145 | 21.7 | 424 | 6.8 | 2055 | 60.6 |
Difference, P2-P1 | −34.2 (−45.8, −22.7) | −22.9 (−33.0, −12.7) | −12.1 (−15.2, −9.0) | −3.9 (−6.6, −1.3) | −33.3 (−58.0, −8.7) | Not sig |
Relative difference (%) | −19 ± 6% | −51 ± 23% | −2.8 ± 0.7% | −36 ± 24% | −1.6 ± 1.2% | NA |
2021 | ||||||
Period 3 | 157 | 25.8 | 429 | 7.2 | 2051 | 47.3 |
Difference, 21P3-20P1 | −22.3 (−34.2, −10.5) | −18.8 (−29.5, −8.2) | −6.5 (−9.6, −3.3) | −3.5 (−6.4, −0.7) | −36.5 (−61.6, −11.3) | −32.4 (−55.5, −9.3) |
Relative difference (%) | −12 ± 7% | −42 ± 24% | −2.5 ± 0.7% | −33 ± 26% | −1.7 ± 1.2% | −41 ± 29% |
Period | Time | DVP at Gerrard | Gardiner at Bay | Gardiner at Windermere |
---|---|---|---|---|
2020 Period 1 | 7:00–8:00, weekdays | 8474 | 6713 | 8059 |
12:00–16:00, all days | 7256 | 6217 | 8876 | |
2020 Period 2 | 7:00–8:00, weekdays | 4740 | 3670 | 5817 |
12:00–16:00, all days | 4736 | 4305 | 5199 | |
2020P2-2020P1 (%) | 7:00–8:00, weekdays | −44 (%) | −45 (%) | −28 (%) |
12:00–16:00, all days | −35 (%) | −31 (%) | −41 (%) | |
2021 Jan14–Feb18 * | 7:00–8:00, weekdays | 6118 | 4551 | 7143 |
12:00–16:00, all days | 6307 | 5054 | 7164 | |
2021(Jan–Feb)-2020P1 (%) | 7:00–8:00, weekdays | −28 (%) | −32 (%) | −11 (%) |
12:00–16:00, all days | −13 (%) | −19 (%) | −19 (%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Byrne, B.; Colebatch, O.; Mittermeier, R.L.; Vogel, F.; Strong, K. Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy. Atmosphere 2021, 12, 848. https://doi.org/10.3390/atmos12070848
You Y, Byrne B, Colebatch O, Mittermeier RL, Vogel F, Strong K. Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy. Atmosphere. 2021; 12(7):848. https://doi.org/10.3390/atmos12070848
Chicago/Turabian StyleYou, Yuan, Brendan Byrne, Orfeo Colebatch, Richard L. Mittermeier, Felix Vogel, and Kimberly Strong. 2021. "Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy" Atmosphere 12, no. 7: 848. https://doi.org/10.3390/atmos12070848
APA StyleYou, Y., Byrne, B., Colebatch, O., Mittermeier, R. L., Vogel, F., & Strong, K. (2021). Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy. Atmosphere, 12(7), 848. https://doi.org/10.3390/atmos12070848