Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Agrometeorological Indices and Calculations
3. Results and Discussion
3.1. Maize Agrometeorological Conditions and Trends
3.1.1. Maize Growing Degree Days (GDD)
3.1.2. Maize Heat Stress Index (HSI)
3.1.3. Maize Frost Days (FD)
3.2. Wheat Agroclimatic Conditions and Trends
3.2.1. Wheat Growing Degree Days (GDD)
3.2.2. Wheat Heat Stress Index (HSI)
3.2.3. Wheat Frost Days (FD)
3.3. Annually Calculated Frost Parameters
3.3.1. Last Spring Frost (LSF)
3.3.2. First Autumn Frost (FAF)
3.3.3. Free of Frost Days (FFD)
4. Concluding Remarks
- The thermal requirements (GDD) for both maize and wheat have been fulfilled in the year 2020 for most of the agricultural land in the Balkans.
- The GDD trend indicates clearly that the studied cultivations could sprawl to higher and northern places of the studied area.
- The HSI spatial distribution for 2020 and the related trend reveal that in the near future, the potential heat injuries will increase, even over mountainous areas. The HSI trend is increased over the high agricultural production areas of Greece and the entire Albania.
- The frost during the cultivation period of maize and wheat, in not frequent in a significant part of the Balkans, except in the high altitude areas of the Carpathians and of Montenegro, when the related trends are negative except of some areas of the Adriatic coast (Albania, Croatia) and some small, isolated areas of Romania, Serbia and Bulgaria.
- The frost risk is low over the Balkans’ agricultural areas, and all the related indices (and their trends) reveal a potential reduction.
- The LSF trend is negative over almost the entire Balkans’ peninsula, indicating an earlier occurrence of LSF. A positive trend is recorded over coastal Albania, central Greece, and the Donau plain between Romania and Bulgaria.
- The FAF trend indicates a potential later autumn occurrence over most of the study area, except some mountainous regions of the central Balkans.
- The trends of FFD reveals that in the near future, the free of frost season would be lengthened for all the studied area, except for south-central Romania, coastal Albania, and an isolated area between Bulgaria and North Macedonia.
- The probability density plots indicate a clear shift to earlier LSF, delayed FAF and longer FFD from the 1980–1999 period to 2000–2020 period, strengthening the estimation of lower frost risk during the near future.
- The agrometeorological conditions and their trends indicate that both maize and wheat cultivations will face improved conditions in terms of GDD accumulation and reduced frost. The HSI index and its trends reveal increasing thermal pressure and potentially increased need for irrigation.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Trnka, M.; Hlavinka, P.; Semenov, M.A. Adaptation Options for Wheat in Europe Will Be Limited by Increased Adverse Weather Events under Climate Change. J. R. Soc. Interface 2015, 12, 20150721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic Conditions in Europe under Climate Change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Wolf, J.; Van Diepen, C.A. Effects of Climate Change on Grain Maize Yield Potential in the European Community. Clim. Chang. 1995, 29, 299–331. [Google Scholar] [CrossRef] [Green Version]
- Kostopoulou, E.; Tolika, K.; Tegoulias, I.; Giannakopoulos, C.; Somot, S.; Anagnostopoulou, C.; Maheras, P. Evaluation of a Regional Climate Model Using in Situ Temperature Observations over the Balkan Peninsula. Tellus A 2009, 61, 357–370. [Google Scholar] [CrossRef]
- Ma, S.; Churkina, G.; Trusilova, K. Investigating the Impact of Climate Change on Crop Phenological Events in Europe with a Phenology Model. Int. J. Biometeorol. 2012, 56, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Terando, A.; Easterling, W.E.; Keller, K.; Easterling, D.R. Observed and Modeled Twentieth-Century Spatial and Temporal Patterns of Selected Agro-Climate Indices in North America. J. Clim. 2012, 25, 473–490. [Google Scholar] [CrossRef]
- Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; et al. Simulation of Spring Barley Yield in Different Climatic Zones of Northern and Central Europe: A Comparison of Nine Crop Models. Field Crops Res. 2012, 133, 23–36. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.-X.; Huard, F. Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Spiertz, J.H.J.; Ewert, F. Crop Production and Resource Use to Meet the Growing Demand for Food, Feed and Fuel: Opportunities and Constraints. NJAS Wagening. J. Life Sci. 2009, 56, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A.; Ort, D.R. How Do We Improve Crop Production in a Warming World? Plant Physiol. 2010, 154, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidhuber, J.; Tubiello, F.N. Global Food Security under Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, E.I.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F. Global Hot-Spots of Heat Stress on Agricultural Crops Due to Climate Change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takáč, J.; Ruget, F.; Ferrise, R.; et al. Decline in Climate Resilience of European Wheat. Proc. Natl. Acad. Sci. USA 2019, 116, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogo, B.K.; Kumar, L.; Koech, R.; Langat, P. Modelling Impacts of Climate Change on Maize (Mays, Z.L.) Growth and Productivity: A Review of Models, Outputs and Limitations. J. Geosci. Environ. Prot. 2019. [Google Scholar] [CrossRef] [Green Version]
- Migliorini, P.; Gkisakis, V.; Gonzalvez, V.; Raigón, M.D.; Bàrberi, P. Agroecology in Mediterranean Europe: Genesis, State and Perspectives. Sustainability 2018, 10, 2724. [Google Scholar] [CrossRef] [Green Version]
- Sommer, S.G.; Olesen, J.E.; Petersen, S.O.; Weisbjerg, M.R.; Valli, L.; Rodhe, L.; Béline, F. Region-Specific Assessment of Greenhouse Gas Mitigation with Different Manure Management Strategies in Four Agroecological Zones. Glob. Chang. Biol. 2009, 15, 2825–2837. [Google Scholar] [CrossRef]
- Aguilera, E.; Díaz-Gaona, C.; García-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Sánchez-Rodríguez, M.; Rodríguez-Estévez, V. Agroecology for Adaptation to Climate Change and Resource Depletion in the Mediterranean Region. A Review. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- van Wart, J.; van Bussel, L.G.J.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L.; et al. Use of Agro-Climatic Zones to Upscale Simulated Crop Yield Potential. Field Crops Res. 2013, 143, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.E.; Bindi, M. Consequences of Climate Change for European Agricultural Productivity, Land Use and Policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M. Impact of Climate Change on the Phenology of Typical Mediterranean Crops. Ital. J. Agrometeorol. 2007, 3, 5–12. [Google Scholar]
- Prăvălie, R.; Sîrodoev, I.; Patriche, C.; Roșca, B.; Piticar, A.; Bandoc, G.; Sfîcă, L.; Tişcovschi, A.; Dumitraşcu, M.; Chifiriuc, C.; et al. The Impact of Climate Change on Agricultural Productivity in Romania. A Country-Scale Assessment Based on the Relationship between Climatic Water Balance and Maize Yields in Recent Decades. Agric. Syst. 2020, 179, 102767. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An Integrated Assessment of Climate Change Impacts for Greece in the near Future. Reg. Environ. Chang. 2011, 11, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Vučetić, V. Modelling of Maize Production in Croatia: Present and Future Climate. J. Agric. Sci. 2011, 149, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, V.A.; Hoogenboom, G. The Impact of Climate Variability and Change on Crop Yield in Bulgaria. Agric. For. Meteorol. 2000, 104, 315–327. [Google Scholar] [CrossRef]
- Trbic, G.; Djurdjevic, V.; Mandic, M.V.; Ivanisevic, M.; Cupac, R.; Bajic, D.; Zahirovic, E.; Filipovic, D.; Dekic, R.; Popov, T.; et al. The Impact of Climate Change on Grapevines in Bosnia and Herzegovina. Euro Mediterr. J. Environ. Integr. 2020, 6, 4. [Google Scholar] [CrossRef]
- Teqja, Z.; Kopali, A.; Libohova, Z.; Owens, P.R. A Study of the Impacts of Climate Change Scenarios on the Plant Hardiness Zones of Albania. J. Appl. Meteorol. Climatol. 2017, 56, 615–631. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Birsan, M.-V. Variability of the Aridity in the South-Eastern Europe over 1961–2050. CATENA 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Knox, J.; Daccache, A.; Hess, T.; Haro, D. Meta-Analysis of Climate Impacts and Uncertainty on Crop Yields in Europe. Environ. Res. Lett. 2016, 11, 113004. [Google Scholar] [CrossRef]
- Önol, B.; Semazzi, F.H.M. Regionalization of Climate Change Simulations over the Eastern Mediterranean. J. Clim. 2009, 22, 1944–1961. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.; Barbosa, P. European Degree-Day Climatologies and Trends for the Period 1951–2011. Int. J. Climatol. 2015, 35, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Ci, H.; Zhang, Q.; Singh, V.P.; Xiao, M.; Liu, L. Spatiotemporal Properties of Growing Season Indices during 1961–2010 and Possible Association with Agroclimatological Regionalization of Dominant Crops in Xinjiang, China. Meteorol. Atmos. Phys. 2016, 128, 513–524. [Google Scholar] [CrossRef]
- Abendroth, L.J.; Miguez, F.E.; Castellano, M.J.; Hatfield, J.L. Climate Warming Trends in the U.S. Midwest Using Four Thermal Models. Agron. J. 2019, 111, 3230–3243. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Hu, Q. Changes in Agro-Meteorological Indicators in the Contiguous United States: 1951–2000. Appl. Clim. 2004, 78, 247–264. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S.U.S. Agro-Climate in 20th Century: Growing Degree Days, First and Last Frost, Growing Season Length, and Impacts on Crop Yields. Sci. Rep. 2018, 8, 6977. [Google Scholar] [CrossRef]
- Liu, B.; Henderson, M.; Xu, M. Spatiotemporal Change in China’s Frost Days and Frost-Free Season, 1955–2000. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Gobbett, D.L.; Nidumolu, U.; Crimp, S. Modelling Frost Generates Insights for Managing Risk of Minimum Temperature Extremes. Weather Clim. Extrem. 2020, 27, 100176. [Google Scholar] [CrossRef]
- Erlat, E.; Türkeş, M. Analysis of Observed Variability and Trends in Numbers of Frost Days in Turkey for the Period 1950–2010. Int. J. Climatol. 2012, 32, 1889–1898. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Jones, P.D. Assessment of Climate Extremes in the Eastern Mediterranean. Meteorol. Atmos. Phys. 2005, 89, 69–85. [Google Scholar] [CrossRef]
- Biazar, S.M.; Ferdosi, F.B. An Investigation on Spatial and Temporal Trends in Frost Indices in Northern Iran. Appl. Clim. 2020, 141, 907–920. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.M.G.K.; Peterson, T. Observed Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Wypych, A.; Ustrnul, Z.; Sulikowska, A.; Chmielewski, F.-M.; Bochenek, B. Spatial and Temporal Variability of the Frost-Free Season in Central Europe and Its Circulation Background. Int. J. Climatol. 2017, 37, 3340–3352. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Polychroni, I.; Psomiadis, E.; Nastos, P. Spatiotemporal Estimation of the Olive and Vine Cultivations’ Growing Degree Days in the Balkans Region. Atmosphere 2021, 12, 148. [Google Scholar] [CrossRef]
- Korycinska, A.; Baker, R. Exploiting the High-Resolution JRC-MARS European Climatic Dataset for Pest Risk Mapping. Bull. OEPP/EPPO Bull. 2017, 47, 246–254. [Google Scholar] [CrossRef]
- Mavromatis, T.; Voulanas, D. Evaluating ERA-Interim, Agri4Cast and E-OBS Gridded Products in Reproducing Spatiotemporal Characteristics of Precipitation and Drought over a Data Poor Region: The Case of Greece. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Charalampopoulos, I. The R Language as a Tool for Biometeorological Research. Atmosphere 2020, 11, 682. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 25 April 2020).
- Klik, M.; Collet, Y. Fst: Lightning Fast Serialization of Data Frames for R. Available online: https://CRAN.R-project.org/package=fst (accessed on 1 July 2020).
- Sjoberg, D.D.; Curry, M.; Hannum, M.; Larmarange, J.; Whiting, K.; Zabor, E.C.; Drill, E.; Flynn, J.; Lavery, J.; Lobaugh, S.; et al. Gtsummary: Presentation-Ready Data Summary and Analytic Result Tables. Available online: https://CRAN.R-project.org/package=gtsummary (accessed on 21 April 2021).
- Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 20 April 2021).
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Rötter, R.P.; Brázdil, R.; Eitzinger, J.; Jansen, S.; Skjelvåg, A.O.; Peltonen-Sainio, P.; Hlavinka, P.; et al. Changing Regional Weather-Crop Yield Relationships across Europe between 1901 and 2012. Clim. Res. 2016, 70, 195–214. [Google Scholar] [CrossRef] [Green Version]
- Agri4Cast Data. Available online: https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=sd (accessed on 29 March 2021).
- De Sousa, K.; van Etten, J.; Solberg, S.Ø. Climatrends: Climate Variability Indices for Ecological Modelling. Available online: https://CRAN.R-project.org/package=climatrends (accessed on 13 October 2020).
- Wilhelm, E.P.; Mullen, R.E.; Keeling, P.L.; Singletary, G.W. Heat Stress during Grain Filling in Maize: Effects on Kernel Growth and Metabolism. Crop Sci. 1999, 39, 1733–1741. [Google Scholar] [CrossRef]
- Scheifinger, H.; Menzel, A.; Koch, E.; Peter, C. Trends of Spring Time Frost Events and Phenological Dates in Central Europe. Appl. Clim. 2003, 74, 41–51. [Google Scholar] [CrossRef]
- Trnka, M.; Brázdil, R.; Dubrovský, M.; Semerádová, D.; Štěpánek, P.; Dobrovolný, P.; Možný, M.; Eitzinger, J.; Málek, J.; Formayer, H.; et al. A 200-Year Climate Record in Central Europe: Implications for Agriculture. Agron. Sustain. Dev. 2011, 31, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1-119-24304-1. [Google Scholar]
- Mihailović, D.T.; Lalić, B.; Drešković, N.; Mimić, G.; Djurdjević, V.; Jančić, M. Climate Change Effects on Crop Yields in Serbia and Related Shifts of Köppen Climate Zones under the SRES-A1B and SRES-A2. Int. J. Climatol. 2015, 35, 3320–3334. [Google Scholar] [CrossRef]
- Graczyk, D.; Kundzewicz, Z.W. Changes of Temperature-Related Agroclimatic Indices in Poland. Theor. Appl. Climatol. 2016, 124, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Eitzinger, J.; Semerádová, D.; Hlavinka, P.; Balek, J.; Dubrovský, M.; Kubu, G.; Štěpánek, P.; Thaler, S.; Možný, M.; et al. Expected Changes in Agroclimatic Conditions in Central Europe. Clim. Chang. 2011, 108, 261–289. [Google Scholar] [CrossRef]
- Bristow, K.L.; Abrecht, D.G. Daily Temperature Extremes as an Indicator of High Temperature Stress. Soil Res. 1991, 29, 377–385. [Google Scholar] [CrossRef]
- Burić, D.; Doderović, M. Changes in Temperature and Precipitation in the Instrumental Period (1951–2018) and Projections up to 2100 in Podgorica (Montenegro). Int. J. Climatol. 2021, 41, E133–E149. [Google Scholar] [CrossRef]
- Solaraju-Murali, B.; Caron, L.-P.; Gonzalez-Reviriego, N.; Doblas-Reyes, F.J. Multi-Year Prediction of European Summer Drought Conditions for the Agricultural Sector. Environ. Res. Lett. 2019, 14, 124014. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; et al. Sensitivity of European Wheat to Extreme Weather. Field Crops Res. 2018, 222, 209–217. [Google Scholar] [CrossRef]
- Wilcox, J.; Makowski, D. A Meta-Analysis of the Predicted Effects of Climate Change on Wheat Yields Using Simulation Studies. Field Crops Res. 2014, 156, 180–190. [Google Scholar] [CrossRef]
- Olesen, J.E.; Børgesen, C.D.; Elsgaard, L.; Palosuo, T.; Rötter, R.P.; Skjelvåg, A.O.; Peltonen-Sainio, P.; Börjesson, T.; Trnka, M.; Ewert, F.; et al. Changes in Time of Sowing, Flowering and Maturity of Cereals in Europe under Climate Change. Food Addit. Contam. Part A 2012, 29, 1527–1542. [Google Scholar] [CrossRef]
- Di Paola, A.; Caporaso, L.; Di Paola, F.; Bombelli, A.; Vasenev, I.; Nesterova, O.V.; Castaldi, S.; Valentini, R. The Expansion of Wheat Thermal Suitability of Russia in Response to Climate Change. Land Use Policy 2018, 78, 70–77. [Google Scholar] [CrossRef]
- Boer, R.; Campbell, L.C.; Fletcher, D.J. Characteristics of Frost in a Major Wheat-Growing Region of Australia. Aust. J. Agric. Res. 1993, 44, 1731–1743. [Google Scholar] [CrossRef] [Green Version]
- Barlow, K.M.; Christy, B.P.; O’Leary, G.J.; Riffkin, P.A.; Nuttall, J.G. Simulating the Impact of Extreme Heat and Frost Events on Wheat Crop Production: A Review. Field Crops Res. 2015, 171, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate Change in Europe. 3. Impact on Agriculture and Forestry. A Review. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Pulatov, B.; Linderson, M.-L.; Hall, K.; Jönsson, A.M. Modeling Climate Change Impact on Potato Crop Phenology, and Risk of Frost Damage and Heat Stress in Northern Europe. Agric. For. Meteorol. 2015, 214–215, 281–292. [Google Scholar] [CrossRef]
- Risbey, J.S.; Monselesan, D.P.; O’Kane, T.J.; Tozer, C.R.; Pook, M.J.; Hayman, P.T. Synoptic and Large-Scale Determinants of Extreme Austral Frost Events. J. Appl. Meteorol. Climatol. 2019, 58, 1103–1124. [Google Scholar] [CrossRef]
- Lake, L.; Chauhan, Y.S.; Ojeda, J.J.; Cossani, C.M.; Thomas, D.; Hayman, P.T.; Sadras, V.O. Modelling Phenology to Probe for Trade-Offs between Frost and Heat Risk in Lentil and Faba Bean. Eur. J. Agron. 2021, 122, 126154. [Google Scholar] [CrossRef]
- Vermeesch, P. On the Visualisation of Detrital Age Distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar] [CrossRef]
- Vitasse, Y.; Rebetez, M. Unprecedented Risk of Spring Frost Damage in Switzerland and Germany in 2017. Clim. Chang. 2018, 149, 233–246. [Google Scholar] [CrossRef]
- Moonen, A.C.; Ercoli, L.; Mariotti, M.; Masoni, A. Climate Change in Italy Indicated by Agrometeorological Indices over 122 Years. Agric. For. Meteorol. 2002, 111, 13–27. [Google Scholar] [CrossRef]
- Ruml, M.; Vuković, A.; Vujadinović, M.; Djurdjević, V.; Ranković-Vasić, Z.; Atanacković, Z.; Sivčev, B.; Marković, N.; Matijašević, S.; Petrović, N. On the Use of Regional Climate Models: Implications of Climate Change for Viticulture in Serbia. Agric. For. Meteorol. 2012, 158–159, 53–62. [Google Scholar] [CrossRef]
- Walther, A.; Linderholm, H.W. A Comparison of Growing Season Indices for the Greater Baltic Area. Int. J. Biometeorol. 2006, 51, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Schneider, L.; Rixen, C.; Christen, D.; Rebetez, M. Increase in the Risk of Exposure of Forest and Fruit Trees to Spring Frosts at Higher Elevations in Switzerland over the Last Four Decades. Agric. For. Meteorol. 2018, 248, 60–69. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. Trends in Temperature Indices over Serbia: Relationships to Large-Scale Circulation Patterns. Int. J. Climatol. 2013, 33, 3152–3161. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Dayon, G.; García de Cortázar-Atauri, I.; Ollat, N.; Pagé, C.; van Leeuwen, C. The Risk of Tardive Frost Damage in French Vineyards in a Changing Climate. Agric. For. Meteorol. 2018, 250–251, 226–242. [Google Scholar] [CrossRef]
Country Name | Country Code | Grid Points | (%) Agricultural Grid Points (CLC) 1 | Agricultural Land 2 (%) | Arable Land 3 (%) |
---|---|---|---|---|---|
Albania | AL | 70 | 28 | 43.1 | 22.6 |
Bosnia & Herzegovina | BA | 114 | 32 | 43.1 | 20.0 |
Bulgaria | BG | 224 | 53 | 46.2 | 32.2 |
Greece | GR | 401 | 36 | 47.6 | 16.6 |
Croatia | HR | 123 | 42 | 27.9 | 15.5 |
Montenegro | ME | 19 | 16 | 18.9 | 0.6 |
North Macedonia | KM | 32 | 34 | 50.1 | 16.4 |
Romania | RO | 411 | 54 | 58.7 | 37.3 |
Serbia | RS | 105 | 51 | 39.3 | 29.7 |
Slovenia | SI | 33 | 30 | 30.6 | 9.1 |
Variable | AL 1 | BA | BG | EL | HR | ME | MK | RO | RS | SI |
---|---|---|---|---|---|---|---|---|---|---|
GDD 2 2020 | 2271 | 1701 | 2097 | 2611 | 1888 | 1258 | 2005 | 1814 | 1843 | 1477 |
GDD Trend 3 | 10.11 | 10.71 | 8.65 | 9.42 | 11.05 | 7.26 | 9.65 | 10.00 | 9.31 | 8.73 |
Frost Days 4 2020 | 1.0 | 8.0 | 4.0 | 0.0 | 4.0 | 13.0 | 5.0 | 8.0 | 8.0 | 10.0 |
Frost Days Trend 5 | −0.03 | −0.13 | −0.06 | 0.00 | −0.04 | −0.07 | −0.08 | −0.10 | −0.06 | −0.19 |
HIS 6 2020 | 168.0 | 50.0 | 119.0 | 143.0 | 71.0 | 3.0 | 112.0 | 51.0 | 56.0 | 8.0 |
HIS 7 Trend | 3.51 | 2.17 | 2.51 | 1.56 | 2.02 | 0.52 | 3.02 | 2.00 | 2.58 | 0.86 |
Variable | AL 1 | BA | BG | EL | HR | ME | MK | RO | RS | SI |
---|---|---|---|---|---|---|---|---|---|---|
GDD 2 2020 | 2898 | 2169 | 2530 | 3511 | 2346 | 1653 | 2484 | 2193 | 2286 | 1880 |
GDD Trend 3 | 11.9 | 12.1 | 8.7 | 11.3 | 12.7 | 7.2 | 10.6 | 10.1 | 9.7 | 10.4 |
Frost Days 4 2020 | 45.0 | 76.0 | 61.0 | 3.0 | 55.0 | 89.0 | 65.0 | 75.0 | 75.0 | 87.0 |
Frost Days Trend 5 | −0.40 | −0.91 | −0.47 | −0.18 | −0.63 | −0.54 | −0.63 | −0.65 | −0.54 | −0.80 |
HIS 6 2020 | 78.0 | 27.0 | 42.0 | 72.0 | 34.0 | 3.0 | 68.0 | 21.0 | 26.0 | 4.0 |
HSI Trend 7 | 1.77 | 1.24 | 1.09 | 0.57 | 1.16 | 0.22 | 1.51 | 0.98 | 1.28 | 0.53 |
Variable | AL 1 | BA | BG | EL | HR | ME | MK | RO | RS | SI |
---|---|---|---|---|---|---|---|---|---|---|
LSF 2 2020 | 93.0 | 107.0 | 99.0 | 40.0 | 106.0 | 107.0 | 102.0 | 107.0 | 107.0 | 106.0 |
LSF Trend | −0.16 | −0.38 | −0.07 | −0.38 | −0.42 | −0.19 | −0.24 | −0.13 | −0.25 | −0.37 |
FAF 3 2020 | 325.0 | 320.0 | 327.0 | 328.0 | 326.0 | 293.0 | 314.0 | 307.0 | 294.0 | 312.0 |
FAF Trend | 0.28 | 0.25 | 0.18 | 0.34 | 0.26 | −0.04 | 0.20 | 0.11 | 0.01 | 0.22 |
FFD 4 2020 | 234.0 | 219.0 | 228.0 | 325.0 | 221.0 | 186.0 | 214.0 | 198.0 | 187.0 | 205.0 |
FFD Trend | 0.32 | 0.59 | 0.23 | 0.68 | 0.70 | 0.10 | 0.47 | 0.24 | 0.26 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalampopoulos, I. Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region. Atmosphere 2021, 12, 671. https://doi.org/10.3390/atmos12060671
Charalampopoulos I. Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region. Atmosphere. 2021; 12(6):671. https://doi.org/10.3390/atmos12060671
Chicago/Turabian StyleCharalampopoulos, Ioannis. 2021. "Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region" Atmosphere 12, no. 6: 671. https://doi.org/10.3390/atmos12060671
APA StyleCharalampopoulos, I. (2021). Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region. Atmosphere, 12(6), 671. https://doi.org/10.3390/atmos12060671