Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the Era of Climate Change
Conflicts of Interest
References
- Müller, N.; Kuttler, W.; Barlag, A.-B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor. Appl. Climatol. 2014, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Röckle, R.; Richter, C.; Höfl, H.; Steinicke, W.; Streifeneder, M.; Mayer, H. Planungsrelevante Bewertung des Stadtklimas. Umweltmeteorologie 2008, 68, 334–340. [Google Scholar]
- Ketterer, C.; Matzarakis, A. Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landsc. Urban Plan. 2014, 122, 78–88. [Google Scholar] [CrossRef]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Matzarakis, A.; Paramita, B. Equity, Equality and Justice in Urban Housing Development; UPI Press: Bandung, Indonesia, 2018; pp. 1–327. [Google Scholar]
- Landsberg, H.E. The Urban Climate; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Matzarakis, A. Die thermische Komponente des Stadtklimas; Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2001; pp. 1–287. [Google Scholar]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P.E. Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A. A Note on the Assessment of the Effect of Atmospheric Factors and Components on Humans. Atmosphere 2020, 11, 1283. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ketterer, C.; Matzarakis, A. Human-biometeorological assessment of the urban heat island in a city with complex topography – The case of Stuttgart, Germany. Urban Clim. 2014, 10, 573–584. [Google Scholar] [CrossRef]
- Matzarakis, A. Stadtklima vor dem Hintergrund des Klimawandels. Gefahrst. –Reinhalt. Der Luft 2013, 73, 115–118. [Google Scholar]
- Matzarakis, A. Transfer of climate data for tourism applications—the climate-tourism/transfer-information-scheme. Sustain. Environ. Res. 2014, 24, 273–280. [Google Scholar]
- Matzarakis, A.; Endler, C. Climate change and thermal bioclimate in cities: Impacts and options for adaptation in Freiburg, Germany. Int. J. Biometeorol. 2010, 54, 479–483. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D.; Ketterer, C.; Martinelli, L. Urban bioclimate and micro climate—How to construct cities in the era of climate change. In Climate Change and Sustainable Heritage; Meuwissen, J.M.C., Hofbauer, C.K., Kandjani, E.M., Eds.; 2018; pp. 38–61. Available online: https://www.researchgate.net/publication/323935446_URBAN_BIOCLIMATE_AND_MICRO_CLIMATE-HOW_TO_CONSTRUCT_CITIES_IN_THE_ERA_OF_CLIMATE_CHANGE (accessed on 20 April 2021).
- Herrmann, J.; Matzarakis, A. Mean radiant temperature in idealised urban canyons--examples from Freiburg, Germany. Int. J. Biometeorol. 2012, 56, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, D.; Matzarakis, A. Modeling of changes in thermal bioclimate: Examples based on urban spaces in Freiburg, Germany. Theor. Appl. Climatol. 2012, 111, 547–558. [Google Scholar] [CrossRef]
- Mauree, D.; Coccolo, S.; Perera, A.T.D.; Nik, V.; Scartezzini, J.-L.; Naboni, E. A new framework to evaluate urban design using urban microclimatic modeling in future climatic conditions. Sustainability 2018, 10, 1134. [Google Scholar] [CrossRef] [Green Version]
- Höppe, P.R. Heat balance modelling. Experientia 1993, 49, 741–746. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- VDI Guideline 3787/Part 2. Bestimmung der mittleren Strahlungstemperatut - Anhang. In VDI/DIN Handbuch Reinhaltung der Luft Umweltmeteorologie; KRdL, K.R.d.L.i.V.u.D.N., Ed.; Beuth Verlag: Berlin, Germany, 1998. [Google Scholar]
- Matzarakis, A.; Amelung, B. Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal Forecasts, Climatic Change and Human Health; Springer: Berlin/Heidelberg, Germany, 2008; pp. 161–172. [Google Scholar]
- VDI Guideline 3787/Part 2. Methoden zur human-biometeorologischen Bewertung von Klima und Lufthygiene für die Stadt- und Regionalplanung. In VDI/DIN Handbuch Reinhaltung der Luft Umweltmeteorologie; KRdL, K.R.d.L.i.V.u.D.N., Ed.; Beuth: Berlin, Germany, 1998. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Gagge, A.P.; Fobelets, A.; Berglund, L. A standard predictive Index of human reponse to thermal enviroment. Trans./Am. Soc. Heat. Refrig. Air-Cond. Eng. 1986, 92, 709–731. [Google Scholar]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef] [Green Version]
- Staiger, H.; Laschewski, G.; Gratz, A. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorol. 2012, 56, 165–176. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI--why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Binarti, F.; Koerniawan, D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Clim. 2020, 31. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631-632, 390–406. [Google Scholar] [CrossRef]
- Fröhlich, D.; Matzarakis, A. Spatial Estimation of Thermal Indices in Urban Areas—Basics of the SkyHelios Model. Atmosphere 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Bauche, J.P.; Grigorieva, E.; Matzarakis, A. Human-Biometeorological Assessment of Urban Structures in Extreme Climate Conditions: The Example of Birobidzhan, Russian Far East. Adv. Meteorol. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Thwaites, K.; Porta, S.; Romice, O.; Greaves, M. Urban Sustainability through Environmental Design: Approaches to Time-People-Place Responsive Urban Spaces; Taylor & Francis: Abingdon, UK, 2007. [Google Scholar]
- Fröhlich, D.; Matzarakis, A. Modeling of Changes in Human Thermal Bioclimate Resulting from Changes in Urban Design: Example Based on a Popular Place in Freiburg, Southwest Germany. In Advances in Meteorology, Climatology and Atmospheric Physics; Helmis, C., Nastos, P., Eds.; Springer Atmospheric Sciences: Berlin/Heidelberg, Germany, 2013; pp. 443–449. [Google Scholar]
- Knez, I.; Thorsson, S.; Eliasson, I.; Lindberg, F. Psychological mechanisms in outdoor place and weather assessment: Towards a conceptual model. Int. J. Biometeorol. 2009, 53, 101–111. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L.; Huang, Y.-C. Effect of pavements albedo on long-term outdoor thermal comfort. Ber. Des Meteorol. Inst. Der Albert-Ludwigs-Univ. Freibg. 2010, 497. [Google Scholar]
- Akbari, H. Cooling Our Communities. A Guidebook on Tree Planting and Light-Colored Surfacing; United States Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Ketterer, C.; Matzarakis, A. Mapping the Physiologically Equivalent Temperature in urban areas using artificial neural network. Landsc. Urban Plan. 2016, 150, 1–9. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theor. Appl. Climatol. 2014, 115, 333–340. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Costa, J.; Santamouris, M.; Matzarakis, A. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Manzano-Agugliaro, F.; Montoya, F.G.; Sabio-Ortega, A.; García-Cruz, A. Review of bioclimatic architecture strategies for achieving thermal comfort. Renew. Sustain. Energy Rev. 2015, 49, 736–755. [Google Scholar] [CrossRef]
- Jänicke, B.; Meier, F.; Hoelscher, M.-T.; Scherer, D. Evaluating the effects of façade greening on human bioclimate in a complex urban environment. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Matzarakis, A. Implementation of human thermal comfort information in Koppen-Geiger climate classification-the example of China. Int. J. Biometeorolgy 2016, 60, 1801–1805. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Frohlich, D. Sport events and climate for visitors--the case of FIFA World Cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef]
- Wu, Y.; Graw, K.; Matzarakis, A. Comparison of thermal comfort between Sapporo and Tokyo—the case of the Olympics 2020. Atmosphere 2020, 11, 444. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P. Visualization of Climate Factors for Sports Events and Activities–The Tokyo 2020 Olympic Games. Atmosphere 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Algeciras, J.A.; Gómez Consuegra, L.; Matzarakis, A. Spatial-temporal study on the effects of urban street configurations on human thermal comfort in the world heritage city of Camagüey-Cuba. Build. Environ. 2016, 101, 85–101. [Google Scholar] [CrossRef]
- Rodríguez-Algeciras, J.; Rodríguez-Algeciras, A.; Chaos-Yeras, M.; Matzarakis, A. Tourism-related climate information for adjusted and responsible planning in the tourism industry in Barcelona, Spain. Theor. Appl. Climatol. 2020, 142, 1003–1014. [Google Scholar] [CrossRef]
- Rodriguez Algeciras, J.A.; Matzarakis, A. Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona, Spain. Int. J. Biometeorolgy 2016, 60, 1261–1270. [Google Scholar] [CrossRef]
- Rodríguez-Algeciras, J.; Tablada, A.; Chaos-Yeras, M.; De la Paz, G.; Matzarakis, A. Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba. Renew. Energy 2018, 125, 840–856. [Google Scholar] [CrossRef]
- Straff, W.; Mücke, H.-G.; Baeker, R.; Baldermann, C.; Braubach, A.; Litvinovitch, J.; Matzarakis, A.; Petzold, G.; Rexroth, U.; Schroth, S. Handlungsempfehlungen für die Erstellung von Hitzeaktionsplänen zum Schutz der menschlichen Gesundheit. Bundesgesundheitsblatt-Gesundh.-Gesundh. 2017, 60, 662–672. [Google Scholar] [CrossRef] [Green Version]
- Zielo, B.; Matzarakis, A. Bedeutung von Hitzeaktionspläne für den präventiven Gesundheitsschutz in Deutschland. Gesundheitswesen 2017, 79. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matzarakis, A. Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the Era of Climate Change. Atmosphere 2021, 12, 546. https://doi.org/10.3390/atmos12050546
Matzarakis A. Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the Era of Climate Change. Atmosphere. 2021; 12(5):546. https://doi.org/10.3390/atmos12050546
Chicago/Turabian StyleMatzarakis, Andreas. 2021. "Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the Era of Climate Change" Atmosphere 12, no. 5: 546. https://doi.org/10.3390/atmos12050546
APA StyleMatzarakis, A. (2021). Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the Era of Climate Change. Atmosphere, 12(5), 546. https://doi.org/10.3390/atmos12050546