Postharvest Burning of Crop Residues in Home Stoves in a Rural Site of Daejeon, Korea: Its Impact to Atmospheric Carbonaceous Aerosol
Abstract
:1. Introduction
2. Experimental Method
2.1. Ambient Aerosol Sampling and Sample Preparation
2.2. Analysis of Monosaccharides and Water-Soluble Inorganic Ions
2.3. Organic Carbon/Elemental Carbon (OC/EC) Analysis
2.4. Laboratory Combustion of Crop Residue Samples
2.5. Principal Component Analysis (PCA)
3. Result and Discussion
3.1. Chemical Characteristics of Fine Particulate Matter (PM2.5) during the Severe BB Episode
3.2. Tracking Potential Sources of Aerosol Particles
3.3. Relationship between BB Tracers and Carbonaceous Aerosols
3.4. Tracking Sources of BB in the Rural and Urban Atmosphere
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.; Banerjee, T.; Raju, M.P.; Deboudt, K.; Hamer, M.S.; Singh, R.S.; Mall, R.K. Aerosol chemistry, transport, and climatic implications during extreme biomass burning emissions over the Indo-Gangetic Plain. Atmos. Chem. Phys. 2018, 18, 14197–14215. [Google Scholar] [CrossRef] [Green Version]
- Malavelle, F.F.; Haywood, J.M.; Mercado, L.M.; Folberth, G.A.; Bellouin, N.; Sitch, S.; Artaxo, P. Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model. Atmos. Chem. Phys. 2019, 19, 1301–1326. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.M.; Tan, H.B.; Li, Y.J.; Li, Z.J.; Schurman, M.I.; Liu, L.; Wu, C.; Chan, C.K. Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmos. Chem. Phys. 2018, 18, 16409–16418. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cy. 2001, 15, 955–966. [Google Scholar]
- Aouizerats, B.; Werf, G.R.; Balasubramanian, R.; Betha, R. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event. Atmos. Chem. Phys. 2015, 15, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Wang, S.; Fu, X.; Watson, J.G.; Jiang, J.; Fu, Q.; Chen, C.; Xu, B.; Yu, J.; Chow, J.C.; et al. Impact of biomass burning on haze pollution in the Yangtze River delta, China: A case study in summer 2011. Atmos. Chem. Phys. 2014, 14, 4573–4585. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.Y.; Ohara, T.; Akimoto, H. Bottom-up estimate of biomass burning in mainland China. Atmos. Environ. 2006, 40, 5262–5273. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Qu, L.; Ji, L.; Zhi, G.; Li, J.; Zhang, G. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: Insight into the contribution of biomass burning. Atmos. Chem. Phys. 2016, 16, 11249–11265. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Kong, S.; Wu, F.; Cheng, Y.; Zheng, S.; Yan, Q.; Zheng, H.; Yang, G.; Zheng, M.; Liu, D.; et al. Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation. Atmos. Chem. Phys. 2018, 18, 11623–11646. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xing, X.; Lang, J.; Chen, D.; Cheng, S.; Wei, L.; Wei, X.; Liu, C. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China. Atmos. Chem. Phys. 2017, 17, 2839–2864. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Kim, Y.J. Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Long-range transport pollution, postharvest biomass burning, and Asian dust. J. Geophys. Res. 2011, 116, D02206. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Kim, J.E.; He, Z.; Kim, Y.J.; Kang, G.U. Chemical composition of post-HARVEST Biomass burning aerosols in Gwangju, Korea. J. Air Waste Manag. Assoc. 2004, 54, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yu, G.H.; Bae, M.S. Effects of combustion condition and biomass type on the light absorption of fine organic aerosols from fresh biomass burning emissions over Korea. Environ. Pollut. 2020, 265, 114841. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, X.; Lang, J.; Zhou, Y.; Wei, L.; Wang, X.; Guo, X. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain. Sci. Total Environ. 2017, 583, 280–291. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, E.; Bae, C.; Cho, J.H.; Kim, B.-U.; Kim, S. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys. 2017, 17, 10315–10332. [Google Scholar]
- Kim, B.-U.; Bae, C.; Kim, H.C.; Kim, E.; Kim, S. Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event. Atmos. Environ. 2017, 162, 55–70. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, S.; Wang, S.; Hu, Y.; Shi, X.; Wang, J.; Zhao, B.; Jiang, J.; Zheng, M.; Wu, M.; et al. Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes. Sci. Total Environ. 2017, 580, 283–296. [Google Scholar] [CrossRef]
- Lin, M.; Holloway, T.; Carmichael, G.R.; Fiore, A.M. Quantifying pollution inflow and outflow over East Asia in spring with regional and global models. Atmos. Chem. Phys. 2010, 10, 4221–4239. [Google Scholar]
- Xing, J.; Mathur, R.; Hogrefe, C.; Gan, C.M.; Wong, D.C.; Wei, C.; Gilliam, R.; Pouliot, G. Observations and modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe. Atmos. Chem. Phys. 2015, 15, 2723–2747. [Google Scholar] [CrossRef] [Green Version]
- Engling, G.; Carrico, C.M.; Kreidenweis, S.M.; Collett Jr, J.L.; Day, D.E.; Malm, W.C.; Lincoln, L.; Hao, W.M.; Iinuma, Y.; Herrmann, H. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos. Environ. 2006, 40, S299–S311. [Google Scholar] [CrossRef]
- Jung, J.; Lee, S.; Kim, H.; Kim, D.; Lee, H.; Oh, S. Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period. Atmos. Environ. 2014, 89, 642–650. [Google Scholar] [CrossRef]
- Birch, M.E.; Cary, R.A. Elemental carbon-based method for monitoring occupational exposure to particulate diesel exhaust. Aerosol Sci. Tech. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Kim, D.; Jung, J.; Lee, H.; Choi, S.-H.; Lee, S. Characterization of sampling artifacts in the measurement of carbonaceous particles using high- and low-volume samplers in Daejeon, Korea. Atmos. Environ. 2016, 139, 157–166. [Google Scholar]
- Jung, J.; Lyu, Y.; Lee, M.; Hwang, T.; Lee, S.; Oh, S. Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014. Atmos. Chem. Phys. 2016, 16, 6757–6770. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.I.; Nam, Y.; Lee, C.Y.; Choi, B.K.; Shin, Y.J.; Lim, J.H.; Koh, S.H.; Park, Y.S. Changes in major insect pests of pine forests in Korea over the last 50 years. Forests 2019, 10, 692. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Ghim, Y.S.; Lyu, Y.S.; Lim, Y.J.; Park, J.; Sung, M.Y. Quantification of regional contributions to fine particles at downwind areas under Asian continental outflows during winter 2014. Atmos. Environ. 2019, 210, 231–240. [Google Scholar] [CrossRef]
- Fushimi, A.; Saitoh, K.; Hayashi, K.; Ono, K.; Fujitani, Y.; Villalobos, A.M.; Shelton, B.R.; Takami, A.; Tanabe, K.; Schauer, J.J. Chemical characterization and oxidation potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions. Atmos. Environ. 2017, 163, 118–127. [Google Scholar]
- Pio, C.A.; Legrand, M.; Alves, C.A.; Oliveira, T.; Afonso, J.; Caseiro, A.; Puxbaum, H.; Sanchez-Ochoa, A.; Gelencsér, A. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos. Environ. 2008, 42, 7530–7543. [Google Scholar] [CrossRef]
- Sullivan, A.P.; Holden, A.S.; Patterson, L.A.; McMeeking, G.R.; Kreidenweis, S.M.; Malm, W.C.; Hao, W.M.; Wold, C.E.; Collett, J.L., Jr. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon. J. Geophys. Res. 2008, 113, D22302. [Google Scholar] [CrossRef]
- Pio, C.A.; Legrand, M.; Oliveira, T.; Afonso, J.; Santos, C.; Caseiro, A.; Fialho, P.; Barata, F.; Puxbaum, H.; Sanchez-Ochoa, A.; et al. Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. J. Geophys. Res. 2007, 112, D23S02. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Beddows, D.C.S.; Hu, L.; Yin, J. Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos. Chem. Phys. 2012, 12, 8271–8283. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Sullivan, A.P.; Mack, L.; Jimenez, J.L.; Kreidenweis, S.M.; Onasch, T.B.; Worsnop, D.R.; Malm, W.; Wold, C.E.; Hao, W.M.; et al. Chemical smoke marker emissions during flaming and smoldering phases of laboratory open burning of wildland fuels. Aerosol Sci. Tech. 2010, 44, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schkolnik, G.; Falkovich, A.H.; Rudich, Y.; Maenhaut, W.; Artaxo, P. New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples. Environ. Sci. Technol. 2005, 39, 2744–2752. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hegg, D.A.; Hobbs, P.V.; Kirchstetter, T.W.; Magi, B.I.; Sadilek, M. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. J. Geophys. Res. 2003, 108, 8491. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Kunwar, B.; Deshmukh, D.; Vodicka, P. Preferential Removal of Potassium in the Chimney Deposits of Woodstove: Reconsideration of Biomass Burning Tracers (nss-K and Levoglucosan). AGU Conference 2019, A21C-03. Available online: https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/623599 (accessed on 30 December 2020).
- Cheng, Y.; Engling, G.; He, K.B.; Duan, F.K.; Ma, Y.L.; Du, Z.Y.; Liu, J.M.; Zheng, M.; Weber, R.J. Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys. 2013, 13, 7765–7781. [Google Scholar]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.C. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kawamura, K.; Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 2015, 15, 1959–1973. [Google Scholar] [CrossRef]
Components | Unit | 1 Severe BB | 2 No Event | Entire Period |
---|---|---|---|---|
Range (Average ± 1σ) | ||||
Reconstructed PM2.5 mass 3 | (µg m−3) | 28.5–129.3 (61.2 ± 22.0) | 5.8–53.1 (26.0 ± 11.6) | 5.5–127.9 (38.3 ± 23.1) |
OC | 7.8–50.1 (19.1 ± 9.7) | 0.19–11.8 (6.2 ± 2.9) | 0.19–50.1 (10.8 ± 8.8) | |
EC | 1.5–4.4 (3.0 ± 0.8) | 0.13–3.1 (1.4 ± 0.77) | 0.13–4.4 (1.9 ± 1.1) | |
Cl− | 0.4–5.2 (1.2 ± 1.0) | 0–1.4 (0.35 ± 0.35) | 0–5.2 (0.66 ± 0.76) | |
SO42− | 2.5–8.0 (4.9 ± 1.5) | 1.6–6.4 (3.1 ± 1.1) | 1.6–8.0 (3.7 ± 2.5) | |
NO3− | 1.9–13.7 (7.9 ± 3.5) | 0.29–11.2 (3.8 ± 3.0) | 0.29–13.7 (5.3 ± 3.7) | |
Na+ | 0.18–0.39 (0.28 ± 0.05) | 0.18–0.63 (0.33 ± 0.11) | 0.18–0.63 (0.32 ± 0.10) | |
NH4+ | 3.6–12.9 (7.4 ± 2.9) | 1.5–10.7 (4.1 ± 2.3) | 1.5–12.9 (5.3 ± 3.0) | |
K+ | 0.43–1.5 (0.68 ± 0.23) | 0.19–1.2 (0.5 ± 0.18) | 0.19–1.5 (0.56 ± 0.22) | |
Ca2+ | 0.24–1.8 (0.83 ± 0.45) | 0.23–4.7 (0.91 ± 0.73) | 0.23–4.7 (0.88 ± 0.64) | |
OC/EC ratio | 3.3–14.6 (6.5 ± 2.9) | 1.5–8.5 (5.0 ± 1.5) | 1.5–14.6 (5.5 ± 2.2) | |
Levoglucosan | (µg m−3) | 1.0–3.8 (1.9 ± 0.83) | 0.04–0.89 (0.41 ± 0.26) | 0.04–3.8 (0.96 ± 0.91) |
Mannosan | 0.09–0.66 (0.35 ± 0.16) | 0.009–0.214 (0.082 ± 0.053) | 0.009–0.661 (0.184 ± 0.169) | |
Galactosan | 0.02–0.20 (0.10 ± 0.05) | 0.003–0.06 (0.03 ± 0.02) | 0.003–0.2 (0.06 ± 0.05) |
Components | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
OC | 0.85 | – | – | – |
EC | 0.66 | – | – | – |
Levoglucosan | 0.96 | – | – | – |
Mannosan | 0.91 | – | – | – |
Galactosan | 0.97 | – | – | – |
Cl− | 0.69 | – | – | – |
SO42− | – | 0.90 | – | – |
NO3− | – | 0.94 | – | – |
Na+ | – | – | 0.88 | – |
NH4+ | – | 0.95 | – | – |
K+ | 0.43 | – | 0.79 | – |
Ca2+ | – | – | – | 0.99 |
Eigenvalue | 5.86 | 2.13 | 1.30 | 1.02 |
Explained variance | 48.8 | 17.7 | 10.9 | 8.5 |
Potential source 1 | BB | SIA | Sea salt | Dust |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.S.; Kang, J.H. Postharvest Burning of Crop Residues in Home Stoves in a Rural Site of Daejeon, Korea: Its Impact to Atmospheric Carbonaceous Aerosol. Atmosphere 2021, 12, 257. https://doi.org/10.3390/atmos12020257
Jung JS, Kang JH. Postharvest Burning of Crop Residues in Home Stoves in a Rural Site of Daejeon, Korea: Its Impact to Atmospheric Carbonaceous Aerosol. Atmosphere. 2021; 12(2):257. https://doi.org/10.3390/atmos12020257
Chicago/Turabian StyleJung, Jin Sang, and Ji Hwan Kang. 2021. "Postharvest Burning of Crop Residues in Home Stoves in a Rural Site of Daejeon, Korea: Its Impact to Atmospheric Carbonaceous Aerosol" Atmosphere 12, no. 2: 257. https://doi.org/10.3390/atmos12020257
APA StyleJung, J. S., & Kang, J. H. (2021). Postharvest Burning of Crop Residues in Home Stoves in a Rural Site of Daejeon, Korea: Its Impact to Atmospheric Carbonaceous Aerosol. Atmosphere, 12(2), 257. https://doi.org/10.3390/atmos12020257