Areal Probability of Precipitation in Moist Tropical Air Masses for the United States
Abstract
:1. Introduction
2. Methods
3. Results
3.1. POP in Moist Tropical Air Masses
3.2. Mean MT Precipitation
4. Discussion
4.1. POP Distribution
4.2. Limitations
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, P.W.; Mote, T.L. Standardizing the definition of a “pulse” thunderstorm. Bull. Am. Meteorol. Soc. 2017, 98, 905–913. [Google Scholar] [CrossRef]
- Byers, H.R.; Braham, R.R. The Thunderstorm: Report of the Thunderstorm Project; US Government Printing Office: Washington, DC, USA, 1949; p. 287. [Google Scholar]
- Cerniglia, C.S.; Snyder, W.R. Development of Warning Criteria for Severe Pulse Thunderstorms in the Northeastern United States Using the WSR-88D; National Weather Service: Albany, NY, USA, 2002; p. 14. [Google Scholar]
- Bruick, Z.S.; Karstens, C. An investigation of local and national NWS warning outbreaks for severe convective events. J. Oper. Meteorol. 2017, 5, 14–25. [Google Scholar] [CrossRef]
- Guillot, E.M.; Smith, T.M.; Lakshmanan, V.; Elmore, K.L.; Burgess, D.W.; Stumpf, G.J. Tornado and severe thunderstorm warning forecast skill and its relationship to storm type. In Proceedings of the International Conference on Interactive Information and Processing Systems for Meteorology and Hydrology, New Orleans, LA, USA, 20–24 January 2008. [Google Scholar]
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A Theory for Strong, Long-Lived Squall Lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.W.; Mote, T.L. A climatology of weakly forced and pulse thunderstorms in the Southeast United States. J. Appl. Meteorol. Climatol. 2017, 56, 3017–3033. [Google Scholar] [CrossRef]
- Joslyn, S.; Nadav-Greenberg, L.; Nichols, R.M. Probability of Precipitation: Assessment and Enhancement of End-User Understanding. Bull. Am. Meteorol. Soc. 2009, 90, 185–194. [Google Scholar] [CrossRef]
- NWS. National Weather Service Glossary. Available online: http://w1.weather.gov/glossary/ (accessed on 21 January 2021).
- Stewart, A.E.; Williams, C.A.; Phan, M.D.; Horst, A.L.; Knox, E.D.; Knox, J.A. Through the eyes of the experts: Meteorologists’ perceptions of the probability of precipitation. Weather Forecast. 2016, 31, 5–17. [Google Scholar] [CrossRef]
- Ashley, W.S.; Bentley, M.L.; Stallins, J.A. Urban-induced thunderstorm modification in the Southeast United States. Clim. Chang. 2012, 113, 481–498. [Google Scholar] [CrossRef]
- Bentley, M.L.; Ashley, W.S.; Stallins, J.A. Climatological radar delineation of urban convection for Atlanta, Georgia. Int. J. Climatol. 2010, 30, 1589–1594. [Google Scholar] [CrossRef]
- Bentley, M.L.; Stallins, J.A.; Ashley, W.S. Synoptic environments favourable for urban convection in Atlanta, Georgia. Int. J. Climatol. 2012, 32, 1287–1294. [Google Scholar] [CrossRef]
- Dixon, P.G.; Mote, T.L. Patterns and Causes of Atlanta’s Urban Heat Island Initiated Precipitation. J. Appl. Meteorol. 2003, 42, 1273–1284. [Google Scholar] [CrossRef]
- Haberlie, A.M. Convective Initiation Climatology for the Atlanta, Georgia Region. Master’s Thesis, Northern Illinois University, DeKalb, IL, USA, 2014. [Google Scholar]
- Diffenbaugh, N.S.; Scherer, M.; Trapp, R.J. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA 2013, 110, 16361–16366. [Google Scholar] [CrossRef] [Green Version]
- Senkbeil, J.C.; Saunders, M.E.; Taylor, B. Changes in summer weather type frequency in Eastern North America. Ann. Am. Assoc. Geogr. 2017, 1–17. [Google Scholar] [CrossRef]
- Ashley, W.S.; Gilson, C.W. A reassessment of U.S. lightning mortality. Bull. Am. Meteorol. Soc. 2009, 90, 1501–1518. [Google Scholar] [CrossRef]
- Lackmann, G. Midlatitude Synoptic Meteorology, 1st ed.; American Meteorological Society: Boston, MA, USA, 2011; p. 345. [Google Scholar]
- Miller, P.W.; Ellis, A.; Keighton, S. Spatial distribution of lightning associated with low-shear thunderstorm environments in the central Appalachians region. Phys. Geogr. 2015, 36, 127–141. [Google Scholar] [CrossRef]
- Fabry, F.; Meunier, V.; Puigdomènech Treserras, B.; Cournoyer, A.; Nelson, B. On the climatological use of radar data mosaics: Possibilities and challenges. Bull. Am. Meteorol. Soc. 2017, 98, 2135–2148. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, S.C. The redevelopment of a weather-type classification scheme for North America. Int. J. Climatol. 2002, 22, 51–68. [Google Scholar] [CrossRef]
- Hondula, D.M.; Vanos, J.K.; Gosling, S.N. The SSC: A decade of climate–health research and future directions. Int. J. Biometeorol. 2014, 58, 109–120. [Google Scholar] [CrossRef]
- Gultepe, I.; Fernando, H.J.S.; Pardyjak, E.R.; Hoch, S.W.; Silver, Z.; Creegan, E.; Leo, L.S.; Pu, Z.; De Wekker, S.F.J.; Hang, C. An Overview of the MATERHORN Fog Project: Observations and Predictability. Pure Appl. Geophys. 2016, 173, 2983–3010. [Google Scholar] [CrossRef]
- Lin, Y. GCIP/EOP Surface: Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data, Version 1.0. Available online: https://data.eol.ucar.edu/dataset/21.093 (accessed on 15 July 2020).
- Parker, M.D.; Johnson, R.H. Organizational Modes of Midlatitude Mesoscale Convective Systems. Mon. Weather Rev. 2000, 128, 3413–3436. [Google Scholar] [CrossRef]
- Miller, P.W.; Ellis, A.; Keighton, S. A preliminary assessment of using spatiotemporal lightning patterns for a binary classification of thunderstorm mode. Weather Forecast. 2015, 30, 38–56. [Google Scholar] [CrossRef]
- Miller, P.W.; Mote, T.L.; Ramseyer, C.A. An empirical study of the relationship between seasonal precipitation and thermodynamic environment in Puerto Rico. Weather Forecast. 2019, 34, 277–288. [Google Scholar] [CrossRef]
- Houze, R.A.; Smull, B.F.; Dodge, P. Mesoscale Organization of Springtime Rainstorms in Oklahoma. Mon. Weather Rev. 1990, 118, 613–654. [Google Scholar] [CrossRef]
- Rickenbach, T.M.; Ferreira, R.N.; Wells, H. Springtime Onset of Isolated Convection Precipitation across the Southeastern United States: Framework and Regional Evolution. Mon. Weather Rev. 2020, 148, 891–906. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; p. 407. [Google Scholar]
- Dallavalle, J.P.; Glahn, B. Totward a Gridded MOS System. In Proceedings of the 21st Conference on Weather Analysis and Forecasting, Silver Spring, MD, USA, 28 July–5 August 2005. [Google Scholar]
- Ferranti, L.; Klinker, E.; Hollingsworth, A.; Hoskins, B.J. Diagnosis of systematic forecast errors dependent on flow pattern. Q. J. R. Meteorol. Soc. 2002, 128, 1623–1640. [Google Scholar] [CrossRef]
- Bhatia, K.T.; Nolan, D.S. Relating the Skill of Tropical Cyclone Intensity Forecasts to the Synoptic Environment. Weather Forecast. 2013, 28, 961–980. [Google Scholar] [CrossRef]
- Zawadzki, I.; Morneau, J.; Laprise, R. Predictability of Precipitation Patterns: An Operational Approach. J. Appl. Meteorol. Climatol. 1994, 33, 1562–1571. [Google Scholar] [CrossRef] [Green Version]
- Rickenbach, T.M.; Nieto-Ferreira, R.; Zarzar, C.; Nelson, B. A seasonal and diurnal climatology of precipitation organization in the southeastern United States. Q. J. R. Meteorol. Soc. 2015, 141, 1938–1956. [Google Scholar] [CrossRef]
- Schaaf, C.L.B.; Banta, R.M.; Wurman, J. Thuderstorm-producing terrain features. Bull. Am. Meteorol. Soc. 1988, 69, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Kirshbaum, D.J.; Wang, C.-C. Boundary Layer Updrafts Driven by Airflow over Heated Terrain. J. Atmos. Sci. 2013, 71, 1425–1442. [Google Scholar] [CrossRef]
- Kuo, J.-T.; Orville, H.D. A radar climatology of summertime convective clouds in the Black Hills. J. Appl. Meteorol. 1973, 12, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Haberlie, A.M.; Ashley, W.S.; Pingel, T.J. The effect of urbanisation on the climatology of thunderstorm initiation. Q. J. R. Meteorol. Soc. 2015, 141, 663–675. [Google Scholar] [CrossRef]
- McLeod, J.; Shepherd, M.; Konrad, C.E. Spatio-temporal rainfall patterns around Atlanta, Georgia and possible relationships to urban land cover. Urban Clim. 2017, 21, 27–42. [Google Scholar] [CrossRef]
- Shem, W.; Shepherd, M. On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res. 2009, 92, 172–189. [Google Scholar] [CrossRef]
- Niyogi, D.; Pyle, P.; Lei, M.; Arya, S.P.; Kishtawal, C.M.; Shepherd, M.; Chen, F.; Wolfe, B. Urban modification of thunderstorms: An observational storm climatology and model sase study for the Indianapolis urban region. J. Appl. Meteorol. Climatol. 2010, 50, 1129–1144. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Pierce, H.; Negri, A.J. Rainfall Modification by Major Urban Areas: Observations from Spaceborne Rain Radar on the TRMM Satellite. J. Appl. Meteorol. 2002, 41, 689–701. [Google Scholar] [CrossRef]
- Huff, F.A.; Changnon, S.A. Precipitation Modification by Major Urban Areas. Bull. Am. Meteorol. Soc. 1973, 54, 1220–1233. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. Urban Influences on the Spatiotemporal Characteristics of Runoff and Precipitation during the 2009 Atlanta Flood. J. Hydrometeorol. 2019, 20, 3–21. [Google Scholar] [CrossRef]
- Mote, T.L.; Lacke, M.C.; Shepherd, J.M. Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Hubbert, J.C.; Dixon, M.; Ellis, S.M.; Meymaris, G. Weather Radar Ground Clutter. Part I: Identification, Modeling, and Simulation. J. Atmos. Ocean. Technol. 2009, 26, 1165–1180. [Google Scholar] [CrossRef]
- Hubbert, J.C.; Dixon, M.; Ellis, S.M. Weather Radar Ground Clutter. Part II: Real-Time Identification and Filtering. J. Atmos. Ocean. Technol. 2009, 26, 1181–1197. [Google Scholar] [CrossRef]
Day | SSC Air Mass | 1200-0000 UTC GFS MOS POP (%) | KMSY Precipitation (mm) |
---|---|---|---|
1 | MT | 5 | 0.00 |
2 | MT | 2 | 0.00 |
3 | MT | 6 | 3.56 |
4 | MT | 10 | 0.00 |
5 | MT | 43 | 0.51 |
6 | MT | 14 | 0.00 |
7 | MT | 9 | 0.00 |
8 | MT | 28 | 16.26 |
9 | MT | 44 | 0.00 * |
10 | MT | 57 | 24.13 |
11 | MT | 26 | 6.86 |
12 | MT | 48 | 0.76 |
13 | MT | 43 | 19.30 |
14 | MT | 55 | 0.00 * |
15 | MM | 47 | 1.78 |
16 | MT | 43 | 0.00 |
17 | MT | 52 | 8.64 |
18 | MT | 40 | 6.60 |
19 | MT | 9 | 0.00 * |
20 | MT | 44 | 0.00 * |
21 | MT | 43 | 0.00 |
22 | MT | 48 | 1.02 |
23 | MT | 47 | 0.00 * |
24 | MT | 49 | 2.54 |
25 | MT | 65 | 0.51 |
26 | MM | 94 | 5.59 |
27 | MM | 55 | 14.48 |
28 | MT | 30 | 0.00 |
29 | MT | 31 | 0.51 |
30 | MT | 61 | 0.00 |
31 | MT | 61 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reesman, C.; Miller, P.; D’Antonio, R.; Gilmore, K.; Schott, B.; Bannan, C. Areal Probability of Precipitation in Moist Tropical Air Masses for the United States. Atmosphere 2021, 12, 255. https://doi.org/10.3390/atmos12020255
Reesman C, Miller P, D’Antonio R, Gilmore K, Schott B, Bannan C. Areal Probability of Precipitation in Moist Tropical Air Masses for the United States. Atmosphere. 2021; 12(2):255. https://doi.org/10.3390/atmos12020255
Chicago/Turabian StyleReesman, Cade, Paul Miller, Rebecca D’Antonio, Kevin Gilmore, Ben Schott, and Chris Bannan. 2021. "Areal Probability of Precipitation in Moist Tropical Air Masses for the United States" Atmosphere 12, no. 2: 255. https://doi.org/10.3390/atmos12020255
APA StyleReesman, C., Miller, P., D’Antonio, R., Gilmore, K., Schott, B., & Bannan, C. (2021). Areal Probability of Precipitation in Moist Tropical Air Masses for the United States. Atmosphere, 12(2), 255. https://doi.org/10.3390/atmos12020255