Tropical Overshooting Cloud-Top Height Retrieval from Himawari-8 Imagery Based on Random Forest Model
Abstract
:1. Introduction
2. Dataset
2.1. Himawari-8 Satellite (HMW8/AHI)
2.2. CloudSat Products
2.3. Tropopause Height of the Global Forecast System (GFS)
3. Methodology
3.1. Data Collocation
3.2. Random Forest Regression Model
3.2.1. Feature Selection
3.2.2. Model Tuning
3.3. Metrics for Model Evaluation
4. Results and Discussion
4.1. Comparison of Collocation Method
4.2. Performance of the RF Model
4.2.1. Feature Selection and Model Tuning
4.2.2. Evaluation of the RF Model
4.2.3. Comparison with Interpolation Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wang, P.K. Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res. Atmos. 2003. [Google Scholar] [CrossRef] [Green Version]
- Rosenlof, K.H. How Water Enters the Stratosphere. Science 2003, 302, 1691–1692. [Google Scholar] [CrossRef] [PubMed]
- Devasthale, A.; Fueglistaler, S. A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments. Atmos. Chem. Phys. 2010. [Google Scholar] [CrossRef] [Green Version]
- James, R.; Bonazzola, M.; Legras, B.; Surbled, K.; Fueglistaler, S. Water vapor transport and dehydration above convective outflow during Asian monsoon. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Homeyer, C.R.; Honomichl, S.; Ridley, B.A.; Weisman, M.; Barth, M.C.; Hair, J.W.; Fenn, M.A.; Butler, C.; Diskin, G.S.; et al. Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett. 2014. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, G.Y.; Stephens, G.L. CloudSat adding new insight into tropical penetrating convection. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef] [Green Version]
- Bedka, K.; Brunner, J.; Dworak, R.; Feltz, W.; Otkin, J.; Greenwald, T. Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteorol. Climatol. 2010. [Google Scholar] [CrossRef]
- Lane, T.P.; Sharman, R.D.; Clark, T.L.; Hsu, H.M. An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci. 2003. [Google Scholar] [CrossRef]
- Smith, W.L.; Minnis, P.; Finney, H.; Palikonda, R.; Khaiyer, M.M. An evaluation of operational GOES-derived single-layer cloud top heights with ARSCL data over the ARM Southern Great Plains Site. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Z.; Cao, X.; Tao, F. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar. Atmos. Res. 2018. [Google Scholar] [CrossRef]
- Dworak, R.; Bedka, K.; Brunner, J.; Feltz, W. Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity, and severe storm reports. Weather Forecast. 2012. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res. Atmos. 2005. [Google Scholar] [CrossRef] [Green Version]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most: Intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 2006. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Houze, R.A.; Fan, J.; Brodzik, S.R.; Feng, Z.; Hardin, J.C. Under a Creative Commons Attribution 4.0 InternationThe Detection of Mesoscale Convective Systems by the GPM Ku-Band Spaceborne Radar. J. Meteorol. Soc. Jpn. 2019, 97, 1059–1073. [Google Scholar] [CrossRef] [Green Version]
- Young, A.H.; Bates, J.J.; Curry, J.A. Complementary use of passive and active remote sensing for detection of penetrating convection from CloudSat, CALIPSO, and Aqua MODIS. J. Geophys. Res. Atmos. 2012. [Google Scholar] [CrossRef]
- Weisz, E.; Li, J.; Menzel, W.P.; Heidinger, A.K.; Kahn, B.H.; Liu, C.Y. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Chae, J.H.; Sherwood, S.C. Insights into Cloud-top height and Dynamics from the Seasonal cycle of cloud-top heights observed by MISR in the west Pacific region. J. Atmos. Sci. 2010. [Google Scholar] [CrossRef] [Green Version]
- Kouki, M.; Hiroshi, S.; Ryo, Y.; Toshiharu, I. Algorithm Theoretical Basis Document for Cloud Top Height Product; Technical Note, No.61; Meteorological Satellite Center: Tokyo, Japan, 2016. [Google Scholar]
- Min, M.; Li, J.; Wang, F.; Liu, Z.; Menzel, W.P. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ. 2020, 239. [Google Scholar] [CrossRef]
- Griffin, S.M.; Bedka, K.M.; Velden, C.S. A method for calculating the height of overshooting convective cloud tops using satellite-based IR imager and CloudSat cloud profiling radar observations. J. Appl. Meteorol. Climatol. 2016. [Google Scholar] [CrossRef]
- Wylie, D.P.; Santek, D.; Starr, D.O.C. Cloud-top heights from GOES-8 and GOES-9 stereoscopic imagery. J. Appl. Meteorol. 1998. [Google Scholar] [CrossRef]
- Lee, J.; Shin, D.-B.; Chung, C.-Y.; Kim, J. A Cloud Top-Height Retrieval Algorithm Using Simultaneous Observations from the Himawari-8 and FY-2E Satellites. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Kaňák, J.; Bedka, K.M.; Sokol, A. (PDF) Mature Convective Storms and Their Overshooting Tops over Central Europe—Overshooting Top Height Analysis for Summers 2009–2011. Available online: https://www.researchgate.net/publication/269100731_MATURE_CONVECTIVE_STORMS_AND_THEIR_OVERSHOOTING_TOPS_OVER_CENTRAL_EUROPE_-_OVERSHOOTING_TOP_HEIGHT_ANALYSIS_FOR_SUMMERS_2009-2011 (accessed on 28 November 2020).
- Xiang, B.; Zeng, C.; Dong, X.; Wang, J. The application of a decision tree and stochastic forest model in summer precipitation prediction in Chongqing. Atmosphere 2020. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, X.; Wei, Y.; Zhang, W.; Hou, N.; Xu, J.; Jia, K.; Yao, Y.; Xie, X.; Jiang, B.; et al. Estimating Surface Downward Longwave Radiation Using Machine Learning Methods. Atmosphere 2020, 11, 1147. [Google Scholar] [CrossRef]
- Taheri Shahraiyni, H.; Sodoudi, S. Statistical Modeling Approaches for PM10 Prediction in Urban Areas; A Review of 21st-Century Studies. Atmosphere 2016, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Ning, L.; Luo, Y. Wind speed forecast based on post-processing of numerical weather predictions using a gradient boosting decision tree algorithm. Atmosphere 2020. [Google Scholar] [CrossRef]
- Pawlak, I.; Jarosławski, J. Forecasting of Surface Ozone Concentration by Using Artificial Neural Networks in Rural and Urban Areas in Central Poland. Atmosphere 2019, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Zheng, Y.; Li, B.; Dong, W.; Zhang, X. Forecasting Different Types of Convective Weather: A Deep Learning Approach. J. Meteorol. Res. 2019, 33, 797–809. [Google Scholar] [CrossRef]
- Häkansson, N.; Adok, C.; Thoss, A.; Scheirer, R.; Hörnquist, S. Neural network cloud top pressure and height for MODIS. Atmos. Meas. Tech. 2018. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, A.; Andou, A.; Date, K.; Hoasaka, K.; Mori, N.; Murata, H.; Tabata, T.; Takahashi, M.; Yoshino, R.; Bessho, K. Preliminary validation of Himawari-8/AHI navigation and calibration. In Proceedings of the Earth Observing Systems XX; Butler, J.J., Xiong, X., Gu, X., Eds.; SPIE: Bellingham, WA, USA, 2015; Volume 9607, p. 96072E. [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Chen, L.; Letu, H.; Zhao, M.; Li, S.; Bao, S. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China. J. Geophys. Res. 2017. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016. [Google Scholar] [CrossRef] [Green Version]
- Mace, G. Level 2 GEOPROF Product Process Description and Interface Control Document; Cooperative Institute for Research in the Atmosphere; Colorado State University: Fort Collins, CO, USA, 2004; pp. 1–20. [Google Scholar]
- Hoinka, K.P. The tropopause: Discovery, definition and demarcation. Meteorol. Zeitschrift 1997. [Google Scholar] [CrossRef]
- Pan, L.L.; Hintsa, E.J.; Stone, E.M.; Weinstock, E.M.; Randel, W.J. The seasonal cycle of water vapor and saturation vapor mixing ratio in the extratropical lowermost stratosphere. J. Geophys. Res. Atmos. 2000. [Google Scholar] [CrossRef] [Green Version]
- Homeyer, C.R.; Bowman, K.P.; Pan, L.L. Extratropical tropopause transition layer characteristics from high-resolution sounding data. J. Geophys. Res. Atmos. 2010. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Munchak, L.A. Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res. Atmos. 2011. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Chae, J.H.; Minnis, P.; McGill, M. Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett. 2004. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.S.; Sohn, B.J.; Schmetz, J. CloudSat shedding new light on high-reaching tropical deep convection observed with Meteosat. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef]
- Wang, C.; Luo, Z.J.; Huang, X. Parallax correction in collocating CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) observations: Method and application to convection study. J. Geophys. Res. 2011, 116, D17201. [Google Scholar] [CrossRef] [Green Version]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, O.; Tapak, L.; Abbasi, H.; Maryanaji, Z. Application of random forest time series, support vector regression and multivariate adaptive regression splines models in prediction of snowfall (a case study of Alvand in the middle Zagros, Iran). Theor. Appl. Climatol. 2018. [Google Scholar] [CrossRef]
- Yao, J.; Raffuse, S.M.; Brauer, M.; Williamson, G.J.; Bowman, D.M.J.S.; Johnston, F.H.; Henderson, S.B. Predicting the minimum height of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote Sens. Environ. 2018. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning: Methods and Applications; Springer: Boston, MA, USA, 2012; ISBN 9781441993267. [Google Scholar]
- Boulesteix, A.L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996. [Google Scholar] [CrossRef] [Green Version]
- Kwon, E.H.; Sohn, B.J.; Schmetz, J.; Watts, P. Intercomparison of height assignment methods for opaque clouds over the tropics. Asia-Pac. J. Atmos. Sci. 2010, 46, 11–19. [Google Scholar] [CrossRef]
- Olander, T.L.; Velden, C.S. Tropical cyclone convection and intensity analysis using differenced infrared and water vapor imagery. Weather Forecast. 2009. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J.; Tjemkes, S.A.; Gube, M.; Van De Berg, L. Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 1997. [Google Scholar] [CrossRef]
- Kwon, E.H.; Sohn, B.J.; Schmetz, J.; Watts, P. Use of ozone channel measurements for deep convective cloud height retrievals over the tropics. In Proceedings of the 16th Conference on Satellite Meteorology and Oceanography, Phoenix, AZ, USA, 11–15 January 2009. [Google Scholar]
- Hamada, A.; Nishi, N. Observation-based estimation of cloud-top height by geostationary satellite split-window measurements trained with CloudSat data. In Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions III; SPIE: Bellingham, WA, USA, 2010. [Google Scholar]
- Iguyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Rodriguez-Galiano, V.F.; Luque-Espinar, J.A.; Chica-Olmo, M.; Mendes, M.P. Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Sci. Total Environ. 2018. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Markus, M.J.; Fenn, D.D.; Szejwach, G.; Shenk, W.E. Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Clim. Appl. Meteorol. 1983. [Google Scholar] [CrossRef] [Green Version]
- Kouki, M. Improvement of the Cloud Top Height Algorithm for the Fundamental Cloud Product and Related Evaluation. Available online: https://www.data.jma.go.jp/mscweb/technotes/msctechrep64-3.pdf (accessed on 27 January 2021).
- Houze, R.A.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef] [PubMed]
Variable Type | Candidate Predictors | Abbreviation |
---|---|---|
Infrared brightness Temperature | IRBT of O3, IRW, CO2, absorption channels | BT9.6, BT11.2, BT13.3 |
IRBT of water vapor absorption channel | BT6.2 | |
Brightness temperature differences | BTD between WV and IRW | BTD6.2–11.2 |
BTD between two IRWs | BTD13.3–11.2 | |
BTD between O3 and IRW | BTD9.6–11.2 | |
Geographic factors | Seasonal (Month), latitude, SZA, surface character | Month, Lat, SZA, Surf Ch, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, H.; Zhuang, Y.; Wu, Q.; Chen, S.; Kang, H. Tropical Overshooting Cloud-Top Height Retrieval from Himawari-8 Imagery Based on Random Forest Model. Atmosphere 2021, 12, 173. https://doi.org/10.3390/atmos12020173
Wang G, Wang H, Zhuang Y, Wu Q, Chen S, Kang H. Tropical Overshooting Cloud-Top Height Retrieval from Himawari-8 Imagery Based on Random Forest Model. Atmosphere. 2021; 12(2):173. https://doi.org/10.3390/atmos12020173
Chicago/Turabian StyleWang, Gaoyun, Hongqing Wang, Yizhou Zhuang, Qiong Wu, Siyue Chen, and Haokai Kang. 2021. "Tropical Overshooting Cloud-Top Height Retrieval from Himawari-8 Imagery Based on Random Forest Model" Atmosphere 12, no. 2: 173. https://doi.org/10.3390/atmos12020173
APA StyleWang, G., Wang, H., Zhuang, Y., Wu, Q., Chen, S., & Kang, H. (2021). Tropical Overshooting Cloud-Top Height Retrieval from Himawari-8 Imagery Based on Random Forest Model. Atmosphere, 12(2), 173. https://doi.org/10.3390/atmos12020173