Valley Winds at the Local Scale: Correcting Routine Weather Forecast Using Artificial Neural Networks
Abstract
:1. Introduction
2. Site Characteristics
2.1. Topography and Land Use
2.2. Routine Local Measurements
2.3. Weather Conditions
2.4. Cadarache Valley Wind
3. Numerical Simulations
3.1. WRF Configuration
3.2. Data Extraction
3.3. Forecast Evaluation
3.3.1. Atmospheric Stratification
3.3.2. Winds
Methodology
Results
4. Artificial Neural Network
4.1. ANN Configuration
4.2. Selection of Input Variables
4.3. Significance of Results
5. Results and Discussion
5.1. Selection of Input Variables
5.2. ANN-Related Forecasting Improvements
5.3. ANN Strengths and Weaknesses
5.3.1. Influence of the Wind Speed
5.3.2. Light Winds and Channeling
5.3.3. Improvement of Valley Winds Prediction
5.3.4. Relationship Between above and Inside Valley Winds
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
CEA | Commissariat à l’Énergie Nucléaire et aux Énergies Alternatives |
CDV | Cadarache downvalley |
CV | Cadarache valley |
DACC | Directional accuracy |
DDV | Durance downvalley |
DTR | Diurnal Temperature Range |
DV | Durance valley |
KASCADE | Katabatic winds and Stability over CAdarache for Dispersion of Effluents |
LES | Large eddy simulation |
MAE | Mean absolute error |
MSE | Means squared error |
PC | Proportion correct |
WRF | Weather research and forecasting |
References
- Whiteman, C.D.; Doran, J.C. The Relationship between Overlying Synoptic-Scale Flows and Winds within a Valley. J. Appl. Meteorol. 1993, 32, 1669–1682. [Google Scholar] [CrossRef] [Green Version]
- Clements, W.E.; Archuleta, J.A.; Hoard, D.E. Mean Structure of the Nocturnal Drainage Flow in a Deep Valley. J. Appl. Meteorol. 1989, 28, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.C.; Fast, J.D.; Horel, J. The VTMX 2000 Campaign. Bull. Am. Meteorol. Soc. 2002, 83, 537–554. [Google Scholar] [CrossRef]
- Weigel, A.P.; Rotach, M.W. Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Q. J. R. Meteorol. Soc. 2004, 130, 2605–2627. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Muschinski, A.; Zhong, S.; Fritts, D.; Hoch, S.W.; Hahnenberger, M.; Yao, W.; Hohreiter, V.; Behn, M.; Cheon, Y.; et al. Metcrax 2006: Meteorological Experiments in Arizona’s Meteor Crater. Bull. Am. Meteorol. Soc. 2008, 89, 1665–1680. [Google Scholar] [CrossRef] [Green Version]
- Price, J.D.; Vosper, S.; Brown, A.; Ross, A.; Clark, P.; Davies, F.; Horlacher, V.; Claxton, B.; McGregor, J.R.; Hoare, J.S.; et al. COLPEX: Field and Numerical Studies over a Region of Small Hills. Bull. Am. Meteorol. Soc. 2011, 92, 1636–1650. [Google Scholar] [CrossRef] [Green Version]
- Fernando, H.J.S.; Pardyjak, E.R.; Di Sabatino, S.; Chow, F.K.; De Wekker, S.F.J.; Hoch, S.W.; Hacker, J.; Pace, J.C.; Pratt, T.; Pu, Z.; et al. The MATERHORN: Unraveling the Intricacies of Mountain Weather. Bull. Am. Meteorol. Soc. 2015, 96, 1945–1967. [Google Scholar] [CrossRef]
- Fernando, H.J.S.; Mann, J.; Palma, J.M.L.M.; Lundquist, J.K.; Barthelmie, R.J.; Belo-Pereira, M.; Brown, W.O.J.; Chow, F.K.; Gerz, T.; Hocut, C.M.; et al. The Perdigão: Peering into Microscale Details of Mountain Winds. Bull. Am. Meteorol. Soc. 2019, 100, 799–819. [Google Scholar] [CrossRef]
- Paci, A.; Staquet, C.; Allard, J.; Barral, H.; Canut, G.; Cohard, J.M.; Jaffrezo, J.L.; Martinet, P.; Sabatier, T.; Troude, F.; et al. The Passy-2015 field experiment: Atmospheric dynamics and air quality. Pollut. Atmos. 2017, 231–232. [Google Scholar] [CrossRef]
- Duine, G.J.; Hedde, T.; Roubin, P.; Durand, P.; Lothon, M.; Lohou, F.; Augustin, P.; Fourmentin, M. Characterization of valley flows within two confluent valleys under stable conditions: Observations from the KASCADE field experiment. Q. J. R. Meteorol. Soc. 2017, 143, 1886–1902. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Simon, J.S.; Chow, F.K. The Convective Boundary Layer in the Terra Incognita. J. Atmos. Sci. 2014, 71, 2545–2563. [Google Scholar] [CrossRef]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. The Impact of Horizontal Model Grid Resolution on the Boundary Layer Structure over an Idealized Valley. Mon. Weather Rev. 2014, 142, 3446–3465. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Cuxart, J. A study of the nocturnal flows generated in the north side of the Pyrenees. Atmos. Res. 2014, 145–146, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Udina, M.; Soler, M.R.; Sol, O. A Modeling Study of a Trapped Lee-Wave Event over the Pyrénées. Mon. Weather Rev. 2017, 145, 75–96. [Google Scholar] [CrossRef]
- Conangla, L.; Cuxart, J.; Jiménez, M.A.; Martínez-Villagrasa, D.; Miró, J.R.; Tabarelli, D.; Zardi, D. Cold-air pool evolution in a wide Pyrenean valley. Int. J. Climatol. 2018, 38, 2852–2865. [Google Scholar] [CrossRef]
- Wyngaard, J.C. Toward Numerical Modeling in the “Terra Incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows. Meas. Sci. Technol. 2001, 12, 2020–2021. [Google Scholar] [CrossRef]
- Haiden, T.; Forbes, R.; Ahlgrimm, M.; Bozzo, A. The skill of ECMWF cloudiness forecasts. ECMWF Newsl. 2015, 14–19. [Google Scholar] [CrossRef]
- Marzban, C. Neural Networks for Postprocessing Model Output: ARPS. Mon. Weather Rev. 2003, 131, 1103–1111. [Google Scholar] [CrossRef]
- Gneiting, T. Calibration of Medium-Range Weather Forecasts; Technical Report; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2014. [Google Scholar] [CrossRef]
- Gardner, M.; Dorling, S. Artificial neural networks (the multilayer perceptron—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Dupuy, F.; Duine, G.J.; Durand, P.; Hedde, T.; Roubin, P.; Pardyjak, E. Local-Scale Valley Wind Retrieval Using an Artificial Neural Network Applied to Routine Weather Observations. J. Appl. Meteorol. Clim. 2019, 58, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S.; Chalikov, D.V. New Approach to Calculation of Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in a Climate Model. Mon. Weather Rev. 2005, 133, 1370–1383. [Google Scholar] [CrossRef] [Green Version]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S.; Belochitski, A.A. Using ensemble of neural networks to learn stochastic convection parameterizations for climate and numerical weather prediction models from data simulated by a cloud resolving model. Adv. Artif. Neural Syst. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Gentine, P.; Pritchard, M.; Rasp, S.; Reinaudi, G.; Yacalis, G. Could Machine Learning Break the Convection Parameterization Deadlock? Geophys. Res. Lett. 2018, 45, 5742–5751. [Google Scholar] [CrossRef]
- Rasp, S.; Pritchard, M.S.; Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA 2018, 115, 9684–9689. [Google Scholar] [CrossRef] [Green Version]
- Zjavka, L. Wind speed forecast correction models using polynomial neural networks. Renew. Energy 2015, 83, 998–1006. [Google Scholar] [CrossRef]
- Rasp, S.; Lerch, S. Neural Networks for Postprocessing Ensemble Weather Forecasts. Mon. Weather Rev. 2018, 146, 3885–3900. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.; Vamplew, P. Encoding and Decoding Cycling Data. South Pac. J. Nat. Sci. 1998, 16, 54–58. [Google Scholar]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Duda, M.; Huang, X.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; Technical report NCAR/TN-475+STR; NCAR: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- Duine, G.J.; Hedde, T.; Roubin, P.; Durand, P. A Simple Method Based on Routine Observations to Nowcast Down-Valley Flows in Shallow, Narrow Valleys. J. Appl. Meteorol. Clim. 2016, 55, 1497–1511. [Google Scholar] [CrossRef]
- Obermann, A.; Bastin, S.; Belamari, S.; Conte, D.; Gaertner, M.A.; Li, L.; Ahrens, B. Mistral and Tramontane wind speed and wind direction patterns in regional climate simulations. Clim. Dyn. 2018, 51, 1059–1076. [Google Scholar] [CrossRef] [Green Version]
- Duine, G.J. Characterization of Down-Valley Winds in Stable Stratification from the KASCADE Field Campaign and WRF Mesoscale Simulations. Ph.D. Thesis, Université Toulouse III Paul Sabatier, Toulouse, France, 2015. [Google Scholar]
- Kalverla, P.C.; Duine, G.J.; Steeneveld, G.J.; Hedde, T. Evaluation of the Weather Research and Forecasting Model in the Durance Valley Complex Terrain during the KASCADE Field Campaign. J. Appl. Meteorol. Clim. 2016, 55, 861–882. [Google Scholar] [CrossRef]
- Pineda, N.; Jorba, O.; Jorge, J.; Baldasano, J.M. Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: Application to a mesoscale meteorological model. Int. J. Remote Sens. 2004, 25, 129–143. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Kim, J.H.; Lim, J.O.; Dudhia, J. The WRF single moment microphysics scheme (WSM). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Sukoriansky, S.; Galperin, B.; Perov, V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound. Layer Meteorol. 2005, 117, 231–257. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models; Technical Report; NASA: Washington, DC, USA, 1994. [Google Scholar]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.; et al. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; American Meteorological Society: Seattle, WA, USA, 2004. [Google Scholar]
- Bonekamp, P.N.J.; Collier, E.; Immerzeel, W.W. The Impact of Spatial Resolution, Land Use, and Spinup Time on Resolving Spatial Precipitation Patterns in the Himalayas. J. Hydrometeorol. 2018, 19, 1565–1581. [Google Scholar] [CrossRef] [Green Version]
- Jankov, I.; Gallus, W.A.; Segal, M.; Koch, S.E. Influence of Initial Conditions on the WRF–ARW Model QPF Response to Physical Parameterization Changes. Weather Forecast. 2007, 22, 501–519. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, F. Amélioration de la Connaissance et de la Prévision des Vents de Vallée en Conditions Stables: Expérimentation et Modélisation Statistique Avec Réseau de Neurones Artificiels. Ph.D. Thesis, Université Toulouse III Paul Sabatier, Toulouse, France, 2018. [Google Scholar]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Lara-Fanego, V.; Tovar-Pescador, J. Analysis of WRF Model Wind Estimate Sensitivity to Physics Parameterization Choice and Terrain Representation in Andalusia (Southern Spain). J. Appl. Meteorol. Clim. 2013, 52, 1592–1609. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox User’s Guide; r2015b599ed; The MathWorks Inc.: Natick, MA, USA, 1992. [Google Scholar]
- Dreyfus, G.; Martinez, J.-M.; Samuelides, M.; Gordon, M.; Badran, F.; Thiria, S.; Hérault, L. Réseaux de Neurones—Méthodologie et Applications; Eyrolles: Paris, France, 2002. [Google Scholar]
- May, R.; Dandy, G.; Maier, H. Review of Input Variable Selection Methods for Artificial Neural Networks. In Artificial Neural Networks-Methodological Advances and Biomedical Applications; InTech: London, UK, 2011; Chapter 2; pp. 19–44. [Google Scholar] [CrossRef] [Green Version]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Karpatne, A.; Watkins, W.; Read, J.; Kumar, V. Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. arXiv 2018, arXiv:1710.11431. [Google Scholar]
- Banks, R.F.; Tiana-Alsina, J.; Baldasano, J.M.; Rocadenbosch, F.; Papayannis, A.; Solomos, S.; Tzanis, C.G. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res. 2016, 176–177, 185–201. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J. On the Ability of the WRF Model to Reproduce the Surface Wind Direction over Complex Terrain. J. Appl. Meteorol. Clim. 2013, 52, 1610–1617. [Google Scholar] [CrossRef]
Station | Height | Measures | Dates | Instrument |
---|---|---|---|---|
MET01 | 2 m | , | 17 February 2015–17 February 2016 | Campbell Sci. 05103 cup anemometer |
GBA | 2 m | T | continuously | Rotronic PT100 thermometer |
continuously | Rotronic hygrometer | |||
P | continuously | Vaisala PTB101C barometer | ||
110 m | , | continuously | Metek sonic anemometer | |
T | continuously | Rotronic PT100 thermometer |
WRF Model version | v3.5.1 |
Dates | 1 year of daily forecast from 17 February 2015 12 UTC to 17 February 2016 12 UTC |
Daily analyze hour | 12 UTC |
Global data input | GFS 0.25° hourly forecasts from 12 UTC |
Forecast time | 108 h |
Time step | 50 s on domain 1, 17 s on domain 2 |
Output interval | 1 h |
Top model | 50 hPa |
Domain configuration | 2 domains: France and South-East France |
Horizontal resolution of domains | 9 × 9 km, 136 × 153 cells |
3 × 3 km, 100 × 100 cells | |
Nesting | Two-way |
Vertical levels | 35 both for domains 1 and 2 |
Land cover | CORINE land cover 2006 and USGS parameters (https://land.copernicus.eu/ and [35]) |
Orography | SRTM 3″ [36] |
Microphysics | WSM6 [37] |
Planetary Boundary layer Surface layer | QNSE [38] |
Longwave radiation | RRTM [39] |
Shortwave radiation | Goddard [40] |
Radiation physics time step | 10 min |
Cumulus scheme | Kain-Fritsch [41] |
Land surface | Noah [42] |
Spinup time | 0 h before analysis time but [0, 23 h] lead time forecast is used as spinup and discarded |
Direction Metrics | Correlation | Speed (m s−1) | |||||
---|---|---|---|---|---|---|---|
DACC | PC2 | PC4 | Speed | u | v | Bias | MAE |
0.50 | 0.68 | 0.47 | 0.74 | 0.69 | 0.59 | +1.07 | 1.32 |
Case | Direction Metrics | Correlation | Speed (m s−1) | |||||
---|---|---|---|---|---|---|---|---|
DACC | PC2 | PC4 | Speed | u | v | Bias | MAE | |
WRF | 0.50 | 0.68 | 0.47 | 0.74 | 0.69 | 0.59 | +1.07 | 1.32 |
ANN | 0.68 | 0.76 | 0.71 | 0.78 | 0.78 | 0.70 | −0.34 | 0.62 |
[0.66; 0.70] | [0.75; 0.78] | [0.69; 0.73] | [0.76; 0.80] | [0.76; 0.80] | [0.66; 0.73] | [−0.37; −0.31] | [0.60; 0.65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dupuy, F.; Duine, G.-J.; Durand, P.; Hedde, T.; Pardyjak, E.; Roubin, P. Valley Winds at the Local Scale: Correcting Routine Weather Forecast Using Artificial Neural Networks. Atmosphere 2021, 12, 128. https://doi.org/10.3390/atmos12020128
Dupuy F, Duine G-J, Durand P, Hedde T, Pardyjak E, Roubin P. Valley Winds at the Local Scale: Correcting Routine Weather Forecast Using Artificial Neural Networks. Atmosphere. 2021; 12(2):128. https://doi.org/10.3390/atmos12020128
Chicago/Turabian StyleDupuy, Florian, Gert-Jan Duine, Pierre Durand, Thierry Hedde, Eric Pardyjak, and Pierre Roubin. 2021. "Valley Winds at the Local Scale: Correcting Routine Weather Forecast Using Artificial Neural Networks" Atmosphere 12, no. 2: 128. https://doi.org/10.3390/atmos12020128
APA StyleDupuy, F., Duine, G. -J., Durand, P., Hedde, T., Pardyjak, E., & Roubin, P. (2021). Valley Winds at the Local Scale: Correcting Routine Weather Forecast Using Artificial Neural Networks. Atmosphere, 12(2), 128. https://doi.org/10.3390/atmos12020128